mse_FHme | R Documentation |
This function gives the mean squared error estimator of the EBLUP based on Fay-Herriot model with measurement error using jackknife method.
mse_FHme( formula, vardir, var.x, type.x = "witherror", MAXITER = 1000, PRECISION = 1e-04, data )
formula |
an object of class |
vardir |
vector containing the |
var.x |
vector containing mean squared error of |
type.x |
type of auxiliary variable used in the model. Either source measured with |
MAXITER |
maximum number of iterations allowed. Default value is |
PRECISION |
convergence tolerance limit. Default value is |
data |
optional data frame containing the variables named in formula, vardir, and var.x. |
A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x. See formula
for more details of allowed formulae.
The function returns a list with the following objects:
mse
vector with the values of the mean squared errors of the EBLUPs for each domain.
data(dataME) data(datamix) mse.sae.me <- mse_FHme(formula = y ~ x.hat, vardir = vardir, var.x = c("var.x"), data = dataME) mse.sae.mix <- mse_FHme(formula = y ~ x.hat1 + x.hat2 + x3 + x4, vardir = vardir, var.x = c("var.x1", "var.x2"), type.x = "mix", data = datamix)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.