Nothing
###########################################################################
###
### Subject: R-script To Document the Package
### Date: Septemer 2021
### Author: Bjoern Rohr
### Version: 1.00
###
### Bugfix: /
###
###########################################################################
#########################
##### DOCUMENTATION #####
#########################
#' sampcompR: A package for the comparison of samples
#'
#' Easily analyze and visualize differences between samples (e.g., benchmark
#' comparisons, nonresponse comparisons in surveys) on three levels. The
#' comparisons can be univariate, bivariate or multivariate. On univariate
#' level the variables of interest of a survey and a comparison survey
#' (i.e. benchmark) are compared, by calculating one of several difference
#' measures (e.g., relative difference in mean), and an average difference
#' between the surveys. On bivariate level a function can calculate significant
#' differences in correlations for the surveys. And on multivariate levels a
#' function can calculate significant differences in model coefficients between
#' the surveys of comparison. All of those differences can be easily plotted
#' and outputted as a table. Visualization is based on
#' \code{\link[ggplot2:ggplot]{ggplot}} and can be edited as other plots of
#' ggplot afterwards. For more detailed information on the methods and
#' example use see: Rohr, B., Silber, H., & Felderer, B. (2024). „Comparing the
#' Accuracy of Univariate, Bivariate, and Multivariate Estimates across
#' Probability and Non-Probability Surveys with Population Benchmarks“
#' https://doi.org/10.31235/osf.io/n6ehf.
#'
#' @section sampcompR functions:
#' \describe{
#' \item{\link[sampcompR]{uni_compare}}{Compare Datasets Univariate and Plot Differences}
#' \item{\link[sampcompR]{plot_uni_compare}}{Plot uni_compare objects}
#' \item{\link[sampcompR]{uni_compare_table}}{Get a table output of a uni_compare object}
#' \item{\link[sampcompR]{R_indicator}}{Calculate the R_indicator for several surveys}
#' \item{\link[sampcompR]{biv_compare}}{Compare Datasets Bivariate and Plot Differences}
#' \item{\link[sampcompR]{plot_biv_compare}}{Plot biv_compare objects}
#' \item{\link[sampcompR]{biv_compare_table}}{Get a table output of a biv_compare object}
#' \item{\link[sampcompR]{multi_compare}}{Compare two Datasets on a Multivariate Level (Any GLM Model)}
#' \item{\link[sampcompR]{plot_multi_compare}}{Plot multi_compare objects}
#' \item{\link[sampcompR]{multi_compare_table}}{Get a table output of multi_compare objects}
#' \item{\link[sampcompR]{multi_compare_merge}}{Combine two multi_compare objects, to plot them together}
#' \item{\link[sampcompR]{descriptive_table}}{Get a Descriptive Table for Every Data Frame}
#' \item{\link[sampcompR]{dataequalizer}}{Equalize dataframes}
#' }
#'
#' @section uni_compare function:
#' \link[sampcompR]{uni_compare} Returns data or a plot showing the difference of two or more
#' data frames The differences are calculated on the base of
#' differing metrics, chosen in the funct argument.
#' Results can be visualized using \code{\link[sampcompR]{plot_uni_compare}}.
#'
#' @section biv_compare function:
#' \link[sampcompR]{biv_compare} Returns data or heatmap of difference between two or
#' more data frames, by comparing their correlation matrices. The comparison is
#' based on Pearson's r, calculated using the \code{\link[Hmisc]{rcorr}} function.
#' Results can be visualized using \code{\link[sampcompR]{plot_biv_compare}}.
#'
#' @section multi_compare function:
#' \link[sampcompR]{multi_compare} Returns data of difference between two data frames
#' on a multivariate level. Similar (multivariate) regression models are
#' compared between the surveys. Only GLM models are possible. Results can be
#' visualized using \code{\link[sampcompR]{plot_multi_compare}}.
#'
#'
#' @section dataequalizer function:
#' \link[sampcompR]{dataequalizer} compares two data frames and looks if data frames contain columns
#' with the same name. A copy of y is returned, containing only columns named identical
#' in x and y data frames. The function is mainly used in the other functions of the package.
#'
#'
# #' @section distribution_compare function:
# #' \code{distribution_compare} Returns regression results for a regression model
# #' for both combined data frames. The interaction term shows hat sample the effect
# #' is from. All interaction effects are calculated already and no multiplication is needed.
# #' In default the significance level of the second data frame shows the difference between
# #' df1 and df2, not if the effect size is significant >0.
#'
#'
# #' @section summary_multivar_compare function:
# #' \code{summary_multivar_compare} Returns a function as described in the
# #' \code{\link[sampcompR]{multivar_compare}} function (as if \code{out= "summary"}.
# #' in \code{multivar_compare}.
#'
#'
#' _PACKAGE
#' @name sampcompR
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.