Nothing
#' ########################################################
#' ### ###
#' ### Subject: Uni Compare Function ###
#' ### Date: May 2023 ###
#' ### Author: Bjoern Rohr ###
#' ### Version: 1.00 ###
#' ### ###
#' ### Bugfix: / ###
#' ### ###
#' ########################################################
#'
#'
#' #################################
#' ### The function for the Plot ###
#' #################################
#'
#' ### Documentation of the diff_plotter_function ###
#'
# #' Compare data frames and Plot Differences
# #'
# #' Returns a plot or data showing the difference of two or more
# #' data frames The differences are calculated on the base of
# #' differing metrics, chosen in the funct argument. All used data frames must
# #' contain at least one column named equal in all data frames, that has equal
# #' values. For a comparison of weighted data, uni_compare 2 is more accurate, as it's
# #' bootstrap technique is based on the \link[survey]{svydesign} package.
# #'
# #' @param dfs A character vector containing the names of data frames to compare against the benchmarks.
# #' @param benchmarks A character vector containing the names of benchmarks to compare the data frames against.
# #' The vector must either to be the same length as \code{dfs}, or length 1. If it has length 1 every
# #' df will be compared against the same benchmark. Benchmarks can either be the name of data frames or
# #' the name of a list of tables. The tables in the list need to be named as the respective variables
# #' in the data frame of comparison.
# #' @param variables A character vector containing the names of the variables for the comparison. If NULL,
# #' all variables named similar in both the dfs and the benchmarks will be compared. Variables missing
# #' in one of the data frames or the benchmarks will be neglected for this comparison.
# #' @param nboots The Number of bootstraps used to calculate standard errors. Must either be >2 or 0.
# #' If >2 bootstrapping is used to calculate standard errors with \code{nboots} iterations. If 0, SE
# #' is calculated analytically. We do not recommend using \code{nboots} =0 because this method is not
# #' yet suitable for every \code{funct} used and every method. Depending on the size of the data and the
# #' number of bootstraps, \code{uni_compare} can take a while.
# #' @param funct A function or a vector of functions to calculate the difference between the
# #' data frames. If a single input is given, the same function will be used for all variables.
# #' If the input is a vector, the vector has to be of the same length as \code{variables}.
# #' Then for eachvariable the indicated function will be used. The input can either be a
# #' character indicating a predefined function, or function (not yet clearly defined).
# #' Predefined functions are:
# #'
# #' * \code{"d_mean"}, \code{"ad_mean"} A function to calculate the (absolute) difference in mean of
# #' the variables in dfs and benchmarks with the same name. Only applicable for
# #' metric variables
# #'
# #' * \code{"d_prop"}, \code{"ad_prop"} A function to calculate the (absolute) difference in proportions of
# #' the variables in dfs and benchmarks with the same name. Only applicable for dummy
# #' variables.
# #'
# #' * \code{"prop_modecat"}, \code{"abs_prop_modecat"} A function to calculate the (absolute) difference in
# #' proportions of the variables in dfs and benchmarks with the same name. Only applicable for
# #' variables with a limited number of categories.
# #'
# #' * \code{"avg_prop_diff"}, \code{"avg_abs_prop_diff"} A function to calculate the average (absolute) difference in
# #' proportions of all categories in a variables in dfs and benchmarks with the same name.
# #' Only applicable for variables with the same number of categories.
# #'
# #' * \code{"rel_mean"}, \code{"abs_rel_mean"} A function to calculate the (absolute) relative difference in mean of
# #' the variables in dfs and benchmarks with the same name.Only applicable for
# #' metric variables
# #'
# #' * \code{"rel_prop"}, \code{"abs_rel_prop"} A function to calculate the (absolute) relative difference in proportions of
# #' the variables in dfs and benchmarks with the same name. Only applicable for dummy
# #' variables.
# #'
# #' * \code{"ad_median"} A function to calculate the (absolute) relative difference in median of
# #' the variables in dfs and benchmarks with the same name.
# #'
# #' * \code{"ad_mode"} A function to calculate the (absolute) relative difference in mode category of
# #' the variables in dfs and benchmarks with the same name.
# #'
# #'
# #' @param data If TRUE, a uni_compare_object is returned, containing results of the comparison.
# #' @param legendlabels A character string or vector of strings containing a label for the
# #' legend.
# #' @param legendtitle A character string containing the title of the Legend.
# #' @param colors A vector of colors used in the plot for the
# #' different comparisons.
# #' @param shapes A vector of shapes applicable in [ggplot2::ggplot2()] used in the plot for
# #' the different comparisons.
# #' @param summetric If ,\code{"avg"}, \code{"mse1"}, \code{"rmse1"}, or \code{"R"}
# #' the respective measure is calculated for the biases of each survey. The values
# #' \code{"mse1"} and \code{"rmse2"} lead to similar results as in \code{"mse1"} and \code{"rmse1"},
# #' with slightly different visualization in the plot. If summetric = NULL, no summetric
# #' will be displayed in the Plot. When \code{"R"} is chosen, also \code{response_identificator}
# #' is needed.
# #' @param label_x,label_y A character string or vector of character strings containing a label for
# #' the x-axis and y-axis.
# #' @param plot_title A character string containing the title of the plot.
# #' @param varlabels A character string or vector of character strings containing the new names of
# #' variables, also used in plot.
# #' @param name_dfs,name_benchmarks A character string or vector of character strings containing the
# #' new names of the data frames and benchmarks, also used in plot.
# #' @param summet_size A number to determine the size of the displayed summetric in the plot.
# #' @param ci_type A character string determining the type of bootstrap ci available in the
# #' \code{\link[boot]{boot.ci}} function of the code{boot} package.
# #' @param silence If silence = F a warning will be displayed, if variables are excluded from either
# #' data frame or benchmark, for not existing in both.
# #' @param conf_level A numeric value between zero and one to determine the confidence level of the confidence
# #' interval.
# #' @param conf_adjustment If conf_adjustment=T the confidence level of the confidence interval will be
# #' adjusted with a Bonferroni adjustment, to account for the problem of multiple comparisons.
# #' @param weight,weight_bench A character vector determining variables to weight the \code{dfs} or
# #' \code{benchmarks}. They have to be part of the respective data frame. If only one character is provided,
# #' the same variable is used to weight every df or benchmark. If a weight variable is provided also an id
# #' variable is needed.For weighting, the \code{survey} package is used.
# #' @param id,id_bench A character vector determining id variables used to weight the \code{dfs} or
# #' \code{benchmarks} with the help of the \code{survey} package. They have to be part of the respective
# #' data frame. If only one character is provided, the same variable is used to weight every df or benchmark.
# #' @param strata,strata_bench A character vector determining strata variables used to weight
# #' the \code{dfs} or \code{benchmarks} with the help of the \code{survey} package. They have
# #' to be part of the respective data frame. If only one character is provided, the same variable
# #' is used to weight every df or benchmark.
# #' @param R_variables A character vector with the names of variables that should be used in the model
# #' to calculate the R indicator.
# #' @param response_identificator A character vector, naming response identificators for every df.
# #' response identificators should indicate if respondents are part of the sample (respondents=1)
# #' or not part of the sample (non-respondents=0).
# #' @param type Define the type of comparison. Can either be "comparison" or "nonrespnse".
# #' @param ndigits The number of digits for rounding in plot.
# #'
# #' @return A plot based on [ggplot2::ggplot2()] (or data frame if data==TRUE)
# #' which shows the difference between two or more data frames on predetermined variables,
# #' named identical in both samples.
# #'
# #'
# #' @export
# #' @importFrom magrittr %>%
# #' @importFrom boot boot
# #' @examples
# #'
# #' ## Get Data for comparison
# #' card<-wooldridge::card
# #'
# #' black<-wooldridge::card[wooldridge::card$black==1,]
# #' north<-wooldridge::card[wooldridge::card$south==0,]
# #' white<-wooldridge::card[wooldridge::card$black==0,]
# #' south<-wooldridge::card[wooldridge::card$south==1,]
# #'
# #' ## use the function to plot the data
# #' univar_comp<-sampcompR::uni_compare3(dfs = c("north","white"),
# #' benchmarks = c("south","black"),
# #' variables= c("age","educ","fatheduc","motheduc","wage","IQ"),
# #' funct = "abs_rel_mean",
# #' nboots=200,
# #' summetric="rmse2",
# #' data=FALSE)
# #'
# #' univar_comp
# #'
#'
#' ### The diff_plotter_function
#' uni_compare3 <- function(dfs, benchmarks, variables=NULL, nboots = 2000, funct = "rel_mean",
#' data = FALSE, summetric = "rmse2", varlabels = NULL, type="comparison",
#' weight =NULL, id=NULL, strata=NULL, weight_bench=NULL,id_bench=NULL,
#' strata_bench=NULL, legendlabels = NULL, legendtitle = NULL,
#' colors = NULL, shapes = NULL, label_x = NULL, label_y = NULL,
#' plot_title = NULL, name_dfs=NULL, name_benchmarks=NULL,
#' summet_size=4, ci_type="perc", silence=T, conf_level=0.95,
#' conf_adjustment=NULL, R_variables=NULL, response_identificator=NULL,
#' ndgits=3) {
#'
#'
#' ##################################
#' ### Errors if inputs are wrong ###
#' ##################################
#'
#' ### Not enough Data frames ###
#' if (is.null(dfs) | is.null(benchmarks)) stop("no data for compairson provided")
#'
#'
#' ### benchmarks is longer than 1 but shorter than dfs ###
#' if (length(benchmarks)>1 & length(benchmarks)!=length(dfs)) stop("benchmarks must either be length 1 or the same length as dfs")
#'
#' ### Inputs are not a Data frame ###
#' for (i in 1:length(dfs)){
#'
#' if (is.data.frame(get(dfs[i])) == FALSE) stop(paste(dfs[i],"must be a character naming a data frame",
#' sep = "", collapse = NULL))
#'
#' ### check if benchmarks have similar variables ###
#' if (length(benchmarks)==length(dfs)){
#' if ((any(names(get(dfs[i])) %in% names(get(benchmarks[i]))))==F) stop(dfs[i], " has no common variable with ", benchmarks[i],".")}
#' if ((length(benchmarks)==length(dfs))==F){
#' if ((any(names(get(dfs[i])) %in% names(get(benchmarks[1])))==F)) stop(dfs[i], " has no common variable with ",benchmarks[1],".")}
#' }
#'
#' for (i in 1:length(benchmarks)){
#'
#' if (inherits(get(benchmarks[i]),"data.frame") == FALSE &
#' inherits(get(benchmarks[i]),"list")==FALSE) stop(paste(benchmarks[i], " must be a data frame or a list",
#' sep = "", collapse = NULL))
#' if (inherits(get(benchmarks[i]),"list") &
#' is.null(weight_bench)==F) stop(paste(benchmarks[i]), " if benchmark is a list of tables, weighting needs to be permored, when generating the list.")
#' }
#'
#' ### Check if funct is either a function, character, vector of functions or vector of characters.
#' if(length(funct)==1){
#' if (is.function(funct)==F){
#' if ((funct%in% c("d_mean","ad_mean","d_prop","ad_prop","prop_modecat","abs_prop_modecat",
#' "avg_prop_diff","avg_abs_prop_diff","rel_mean","rel_prop","ad_median",
#' "ad_mode","abs_rel_mean","abs_rel_prop"))==F) {
#' stop("funct must either be a function applicable as statistic in the boot package, or
#' a character vector indicating one of the predefined functions.")
#' }
#' }
#' }
#'
#' if(length(funct)>1){
#' if(is.null(variables)) stop("if funct>1, funct has to be of the same length as variables.")
#' if(length(funct)!= length(variables)) stop("if funct>1, funct has to be of the same length as variables.")
#' for (i in 1:length(funct)) {
#' if (is.function(funct)==F){
#' if ((funct%in% c("d_mean","ad_mean","d_prop","ad_prop","prop_modecat","abs_prop_modecat",
#' "avg_prop_diff","avg_abs_prop_diff","rel_mean","rel_prop","ad_median",
#' "ad_mode","abs_rel_mean","abs_rel_prop"))==F) {
#' stop("funct must either be a function applicable as statistic in the boot package, or
#' a character vector indicating one of the predefined functions.")
#' }
#' }
#' }
#' }
#'
#'
#'
#' ### Check if characterinputs are characters ###
#'
#' if (is.null(label_x) == FALSE) {
#' if (is.character(label_x) == FALSE) stop("label_x must be a character.")
#' }
#' if (is.null(label_y) == FALSE) {
#' if (is.character(label_y) == FALSE) stop("label_y must be a character.")
#' }
#' if (is.null(varlabels) == FALSE) {
#' if (is.character(varlabels) == FALSE) stop("varlabels must be a character.")
#' }
#' if (is.null(plot_title) == FALSE) {
#' if (is.character(plot_title) == FALSE) stop("plot_title must be a character.")
#' }
#' if (is.null(colors) == FALSE) {
#' if (is.character(colors) == FALSE) stop("colors must be a character.")
#' }
#' if (is.null(legendlabels) == FALSE) {
#' if (is.character(legendlabels) == FALSE) stop("legendlabels must be a character.")
#' }
#' if (is.null(legendtitle) == FALSE) {
#' if (is.character(legendtitle) == FALSE) stop("legendtitle must be a character.")
#' }
#' if (is.null(name_dfs) == FALSE) {
#' if (is.character(name_dfs) == FALSE) stop("name_dfs must be a character.")
#' }
#' if (is.null(name_benchmarks ) == FALSE) {
#' if (is.character(name_benchmarks ) == FALSE) stop("name_benchmarks must be a character.")
#' }
#' if (is.null(summet_size) == FALSE) {
#' if (is.numeric(summet_size) == FALSE) stop("summet_size must be a number that is >0.")
#' }
#'
#' ### check for ci-type ###
#' if((ci_type %in% c("perc","norm"))==F) stop('ci_type must either be "perc" or "norm".')
#'
#' ### Check if data frame is logical
#' if (is.logical(data) == FALSE) stop("data must be of type logical")
#' if (is.logical(silence) == FALSE) stop("silence must be of type logical")
#'
#' ### Check if data frame is logical
#' if (is.numeric(nboots) == FALSE) stop("nboots must be of type numeric")
#' if (nboots < 0 | nboots == 1) stop("nboots must be 0(for standard SE) or >1 for bootstrap SE")
#'
#' ### Check is summetric is right ###
#' if (is.null(summetric)== FALSE) {
#' if(summetric!= "rmse1" & summetric!= "rmse2" &
#' summetric!= "mse1" & summetric!= "mse2" &
#' summetric!="avg" & summetric!="avg2" &
#' summetric!="R") stop("summetric must be either avg,avg2, rmse1, rmse2, mse1, mse2 or R")}
#'
#' ### confidence level out of bound ###
#' if (conf_level>1 | conf_level<0) stop("conf_level must be <1 and >0")
#'
#'
#' ### check for weight var ###
#' if(is.null(weight)==F) if(is.null(id)) stop("if a weight var is provided for the data frame also a id is needed")
#' if(is.null(weight_bench)==F) if(is.null(id_bench)) stop("if a weight var is provided for the benchmark also id_bench is needed")
#'
#'
#' ##############################
#' ### Get Benchmarks and DFS ###
#' ##############################
#'
#'
#' ### get benchmark if only one benchmark is provided ###
#' if(length(benchmarks)==1) benchmarks<-c(rep(benchmarks,length(dfs)))
#'
#' ### Get Names of data frameS ###
#'
#' if (is.null(name_dfs)==F) names<-name_dfs else names=NULL
#' name_dfs<-dfs
#' if (is.null(names)==F) name_dfs[1:(length(names))] <- names
#'
#'
#'
#'
#' if (is.null(name_benchmarks)==F) names<-name_benchmarks else names=NULL
#' name_benchmarks<-benchmarks
#'
#' if (is.null(names)==F) name_benchmarks[1:(length(names))] <- names
#'
#'
#'
#' ##########################
#' ### save dfs in a list ###
#' ##########################
#'
#' df_list<-list()
#'
#' for (i in 1:length(dfs)){
#' df_list[[i]]<-get(dfs[i])
#'
#' if (is.null(weight)==F) {
#' if (is.na(weight[i])==F) {
#'
#' ### check if the vector has length=1 ###
#' if(length(weight)==1){
#' weight<-rep(weight,length(benchmarks))
#' }
#'
#' ### check for current weight var bench ###
#' if (is.na(weight[i])==F) {curr_weight<-weight[i]}
#' if (is.na(weight[i])) curr_weight<-NULL
#'
#' ### check for current id var bench ###
#' if(is.null(id)==F){
#'
#' ### check if the vector has length=1 ###
#' if(length(id)==1){
#' id<-rep(id,length(benchmarks))
#' }
#'
#' if (is.na(id[i])==F) curr_id<-id[i]
#' if (is.na(id[i])) curr_id<-NULL}
#' if (is.null(id)) {
#' curr_id<-NULL}
#'
#' ### check for current strata var bench ###
#' if(is.null(strata)==F){
#'
#' ### check if the vector has length=1 ###
#' if(length(strata)==1){
#' strata<-rep(strata,length(benchmarks))
#' }
#'
#' if (is.na(strata[i])==F) curr_strata<-strata[i]
#' if (is.na(strata[i])) curr_strata<-NULL}
#' if (is.null(strata)) {
#' curr_strata<-NULL}
#' if (is.null(variables)==F) df_list[[i]]<-df_list[[i]][,c(colnames(df_list[[i]][colnames(df_list[[i]])%in%variables]),curr_weight,curr_id,curr_strata),drop=F]
#' if (is.null(variables)) df_list[[i]]<-df_list[[i]][,c(colnames(df_list[[i]][colnames(df_list[[i]])%in% colnames(get(benchmarks[i]))]),curr_weight,curr_id,curr_strata),drop=F]
#'
#' if(is.null(curr_weight)==F) df_list[[i]]<-tables_to_df(df=df_list[[i]] ,weights = curr_weight, ID= curr_id, strata = curr_strata)
#' }
#' }
#' }
#'
#' #################################
#' ### save benchmarks in a list ###
#' #################################
#'
#' bench_list<-list()
#'
#' for (i in 1:length(benchmarks)){
#' # check if benchmark is a list
#' if(inherits(get(benchmarks[i]),"data.frame")){bench_list[[i]]<-get(benchmarks[i])}
#' if(inherits(get(benchmarks[i]),"list")){
#' bench_list[[i]]<-tables_to_df_unweighted(tables=names(get(benchmarks[i])),
#' varnames=names(get(benchmarks[i])),
#' tablist=get(benchmarks[i]) )}
#'
#'
#' if (is.null(weight_bench)==F){
#' if (is.na(weight_bench[i])==F) {
#' ### check if the vector has length=1 ###
#' if(length(weight_bench)==1){
#' weight_bench<-rep(weight_bench,length(benchmarks))
#' }
#' ### check for current weight var bench ###
#' if (is.na(weight_bench[i])==F) curr_weight_bench<-weight_bench[i]
#' if (is.na(weight_bench[i])) curr_weight_bench<-NULL
#'
#' ### check for current id var bench ###
#' if(is.null(id_bench)==F){
#'
#' ### check if the vector has length=1 ###
#' if(length(id_bench)==1){
#' id_bench<-rep(id_bench,length(benchmarks))
#' }
#' ### get curr id
#' if (is.na(id_bench[i])==F) curr_id_bench<-id_bench[i]
#' if (is.na(id_bench[i])) curr_id_bench<-NULL}
#' if (is.null(id_bench)) {
#' curr_id_bench<-NULL}
#'
#' ### check for current strata var bench ###
#' if(is.null(strata_bench)==F){
#' ### check if the vector has length=1 ###
#' if(length(strata_bench)==1){
#' strata_bench<-rep(strata_bench,length(benchmarks))
#' }
#'
#' if (is.na(strata_bench[i])==F) curr_strata_bench<-strata_bench[i]
#' if (is.na(strata_bench[i])) curr_strata_bench<-NULL}
#' if (is.null(strata_bench)) {
#' curr_strata_bench<-NULL}
#'
#'
#' if (is.null(variables)==F) bench_list[[i]]<-bench_list[[i]][,c(colnames(bench_list[[i]][colnames(bench_list[[i]])%in%variables]),curr_weight_bench,curr_id_bench,curr_strata_bench),drop=F]
#' if (is.null(variables)) bench_list[[i]]<-bench_list[[i]][,c(colnames(bench_list[[i]][colnames(bench_list[[i]])%in%colnames(df_list[[i]])]),curr_weight_bench,curr_id_bench,curr_strata_bench),drop=F]
#'
#' bench_list[[i]]<-tables_to_df(df=bench_list[[i]] ,weights = curr_weight_bench, ID= curr_id_bench, strata = curr_strata_bench)
#' }
#' }
#' }
#'
#'
#' ###################################
#' ### equalize data to benchmarks ###
#' ###################################
#'
#' ### Equalize Data to Benchmark
#'
#' for (i in 1:length(dfs)){
#' df_list[[i]]<- dataequalizer(target_df= bench_list[[i]] ,source_df = df_list[[i]],
#' variables = variables, silence = silence)
#'
#' bench_list[[i]]<- dataequalizer(target_df = df_list[[i]], source_df = bench_list[[i]],
#' variables = variables, silence = silence)
#' }
#'
#' #####################################################
#' ### Get Functions for every variable in data frames ###
#' #####################################################
#'
#' #############################
#' ### Choosing the Function ###
#' #############################
#'
#' ### get func_name
#' if (is.character(funct)){
#' if (length(funct)==1) func_name<-funct
#' else func_name<-"Difference"}
#'
#' func<-NA
#' if (is.character(funct)){
#' for (i in 1:length(funct)) {
#' if (funct[i] == "rel_mean") func[i] <- "REL_MEAN2"
#' if (funct[i] == "rel_prop") func[i] <- "REL_MEAN2"
#' if (funct[i] == "abs_rel_mean") func[i] <- "ABS_REL_MEAN2"
#' if (funct[i] == "abs_rel_prop") func[i] <- "ABS_REL_MEAN2"
#' if (funct[i] == "ad_mean") func[i] <- "ABS_PROP_DIFF2"
#' if (funct[i] == "d_mean") func[i] <- "PROP_DIFF2"
#' if (funct[i] == "ad_median") func[i] <- "AD_MED2"
#' if (funct[i] == "ad_mode") func[i] <- "AD_MODE2"
#' if (funct[i] == "ks") func[i] <- "KS2"
#' if (funct[i] == "prop_modecat") func[i] <- "PERC_MODECOUNT2"
#' if (funct[i] == "abs_prop_modecat") func[i] <- "ABS_PERC_MODECOUNT2"
#' if (funct[i] == "d_prop") func[i]<- "PROP_DIFF2"
#' if (funct[i] == "ad_prop") func[i]<- "ABS_PROP_DIFF2"
#' if (funct[i] == "avg_prop_diff") func[i] <- "MEAN_PERC_DIST2"
#' if (funct[i] == "avg_abs_prop_diff") func[i] <- "Mean_ABS_PERC_DIST2"
#' #if (funct[i] == "blom_ratio_dist") func[i] <- "BLOM_RATIO_DIST"
#' }}
#'
#' #if (is.character(funct) == FALSE) {
#' # func <- deparse(substitute(funct))}
#'
#' ### if a list of variables is given, a function can be declaired fore every variable ###
#'
#' if (is.null(variables)==F) {
#' if (length(func)>1) func_matrix<- as.data.frame(cbind (variables, func))
#' if (length(func)==1) func_matrix<- as.data.frame(cbind (variables, rep(func, length(variables))))
#' }
#'
#' #####################
#' ### Function list ###
#' #####################
#'
#' ### Build a list for each data frame, that declaires the function unsed for each variable)
#'
#'
#' func_list<-list()
#'
#' if (is.null(variables)==F) {
#' for (i in 1:length(dfs)) {
#' func_list[[i]]<-func_matrix[,2][func_matrix[,1] %in% colnames(df_list[[i]])]
#' }}
#'
#' if (is.null(variables)==T) {
#' for (i in 1:length(dfs)) {
#' func_list[[i]]<-rep (func, ncol(df_list[[i]]))
#' }}
#'
#' ### alpha ###
#'
#' alpha<-1- conf_level
#'
#' #########################
#' ### Calculate Results ###
#' #########################
#'
#'
#' for (i in 1:length(dfs)){
#'
#' if (ncol(df_list[[i]])>0) {
#' if (i==1) {
#' results<-subfunc_diffplotter3(x = df_list[[i]], y = bench_list[[i]],
#' samp = i, nboots = nboots, func = func_list[[i]],
#' func_name = func_name, ci_type=ci_type, alpha=alpha, conf_adjustment=conf_adjustment)
#'
#' }
#'
#'
#' if (i!=1){
#' results<- rbind(results,subfunc_diffplotter3(x = df_list[[i]], y = bench_list[[i]],
#' samp = i, nboots = nboots, func = func_list[[i]],
#' func_name = func_name, ci_type=ci_type, alpha=alpha, conf_adjustment=conf_adjustment))
#' }}
#'
#' if (ncol(df_list[[i]])==0) stop(paste(name_dfs[i],"does not share a common variable with the benchmark or the variables parameter"),
#' sep =" ")
#' }
#'
#' ############################
#' ### Add df_names to Data ###
#' ############################
#'
#' for (i in 1:length(name_dfs)){
#' results$name_dfs[results$sample==i]<-name_dfs[i]
#' }
#'
#' for (i in 1:length(name_benchmarks)){
#' results$name_benchmarks[results$sample==i]<-name_benchmarks[i]
#' }
#'
#'
#' ################################
#' ### Add function names to df ###
#' ################################
#'
#' if (length(funct)>1 ){
#'
#' for (i in 1:length(dfs)){
#' for (j in 1:nrow(results[results$sample])){
#' results$funct[results$sample==i][j]<-funct[j]
#' }}}
#'
#' if(length(funct)==1) results$funct<-funct
#'
#'
#' ############################################################################################
#' ### Calculate a SumMETRIC to DATA, that Makes the whole data frame compairable with another ###
#' ### RMSE & MSE ###
#' ############################################################################################
#'
#' results$mse<-NA
#' results$rmse<-NA
#'
#' for (i in 1:length(dfs)){
#'
#' bias<-results$t_vec[results$sample==i]
#'
#' results$mse[results$sample==i]<-sum(bias*bias)/length(bias)
#' results$rmse[results$sample==i]<-sqrt(sum(bias*bias)/length(bias))
#' results$avg[results$sample==i]<-sum(abs(bias))/length(bias)
#' }
#'
#' #############################
#' ### Calculate R indicator ###
#' #############################
#'
#' ### get R_vars ###
#'
#' if(is.null(R_variables)) R_variables<-colnames(df_list[[i]])
#'
#'
#' for (i in 1:length(dfs)){
#' if (is.null(response_identificator)==F){if(is.na(response_identificator[i])==F)
#'
#' R_indicator<-R_indicator_func(get(dfs[i]),response_identificator=response_identificator,
#' variables=R_variables,
#' weight = weight[i],id=id[i],strata=strata[i])[1]
#' }
#' if(is.null(response_identificator)) R_indicator<-NA
#' if(is.null(response_identificator)==F) {if(is.na(response_identificator[i])==F) R_indicator<-NA}
#'
#'
#' results$R_indicator[results$sample==i]<-R_indicator
#'
#' }
#'
#' ############################################################################
#' ### add results and everything else together to create an results object ###
#' ############################################################################
#'
#' results<-final_data(data = results, name_dfs=name_dfs, name_benchmarks=name_benchmarks, summetric=summetric, colors=colors,
#' shapes=shapes, legendlabels=legendlabels, legendtitle=legendtitle , label_x=label_x, label_y=label_y,
#' summet_size=summet_size, plot_title=plot_title, funct=funct,type=type,
#' ndigits=ndgits)
#'
#' if (isTRUE(data)) return(results)
#'
#'
#'
#' #####################
#' ### Edit varnames ###
#' #####################
#' if (is.null(varlabels)) varlabels<-unique(results$data$varnames)
#' if (length(varlabels) >= length(unique(results$data$varnames))){varlabels<-varlabels[1:length(unique(results$data$varnames))]}
#' if (length(varlabels) < length(unique(results$data$varnames))) varlabels<-c(varlabels,unique(results$data$varnames)[(length(varlabels)+1):length(unique(results$data$varnames))])
#'
#' ################
#' ### Plotting ###
#' ################
#'
#' Plot <- ggplot2::ggplot(data = results$data, ggplot2::aes(x = results$data$t_vec, y = factor(results$data$varnames), col = factor(results$data$sample), shape = factor(results$data$sample), group = factor(results$data$sample))) +
#' ggplot2::geom_point(position = ggplot2::position_dodge(width = 1), stat = "identity", size = 3) +
#' {if (isTRUE(conf_adjustment)==F) ggplot2::geom_errorbar(data = results$data, ggplot2::aes( xmin = results$data$ci_lower, xmax = results$data$ci_upper, width = 0.2), position = ggplot2::position_dodge(width = 1))} +
#' {if (isTRUE(conf_adjustment)) ggplot2::geom_errorbar(data = results$data, ggplot2::aes( xmin = results$data$ci_lower_adjusted, xmax = results$data$ci_upper_adjusted, width = 0.2), position = ggplot2::position_dodge(width = 1))} +
#' ggplot2::scale_y_discrete(limits = rev(unique(results$data$varnames)),labels= varlabels, breaks=unique(results$data$varnames)) +
#' ggplot2::geom_vline(xintercept = 0) +
#' ggplot2::scale_color_manual(
#' values = results$colors, name = results$legendtitle,
#' labels = results$legendlabels
#' ) + ### Handle Color and Legend
#' ggplot2::scale_shape_manual(
#' values = results$shapes,
#' name = results$legendtitle, labels = results$legendlabels
#' ) +
#' ggplot2::xlab(results$label_x) +
#' ggplot2::ylab(results$label_y)
#'
#' if (is.null(results$label_summetric) == FALSE) {
#' Plot <- Plot + ggplot2::geom_label(ggplot2::aes(x = Inf, y = Inf, hjust = 1, vjust = 1, label = results$label_summetric),
#' fill = ggplot2::alpha("white", 0.02), color = ggplot2::alpha("black", 0.1), size=results$summet_size
#' )
#' }
#' if (is.null(results$plot_title) == FALSE) Plot <- Plot + ggplot2::ggtitle(results$plot_title)
#'
#'
#'
#'
#' return(Plot)
#' }
#'
#'
#' ##########################################
#' ### Pregenerated Calculation Functions ###
#' ##########################################
#'
#' ABS_REL_MEAN2<-function(x,y,i){
#' xi<-x[i,]
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' c <- (abs(a - b)/abs(b))
#' return(c)
#'
#' }
#'
#' REL_MEAN2<-function(x,y,i){
#' xi<-x[i,]
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' c <- (a - b)/(b)
#' return(c)
#'
#' }
#'
#' # Absolute Difference in Mean
#' AD_MEAN2 <- function(x, y, i) {
#' abs(mean(stats::na.omit(x[i]), na.rm = TRUE) - mean(stats::na.omit(y), na.rm = TRUE))
#' }
#'
#' # Absolute Difference in Mean
#' D_MEAN2 <- function(x, y, i) {
#' mean(x[i], na.rm = TRUE) - mean(y, na.rm = TRUE)
#' }
#'
#' # Absolute Difference in Median
#' AD_MED2 <- function(x, y, i) {
#' # abs(stats::median(x[i], na.rm = TRUE) - stats::median(y, na.rm = TRUE))
#' xi<-x[i,]
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) stats::median(x, na.rm = TRUE))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) stats::median(x, na.rm = TRUE))))
#' c <- a - b
#' return(c)
#' }
#'
#'
#'
#' # Absolute Difference in Mode
#' Mode <- function(x) {
#' ux <- unique(stats::na.omit(x))
#' ux[which.max(tabulate(match(x, ux)))]
#' }
#'
#'
#'
#' AD_MODE2 <- function(x, y, i) {
#' xi<-x[i,]
#'
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) Mode(x))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) Mode(x))))
#'
#' c <- abs(a - b)
#' }
#'
#'
#'
#' # Function for KS
#' KS2<- function(x, i ,y){
#'
#' sub_x<-x[i,]
#'
#' ks_var<-function(x,y) {
#' ks<-stats::ks.test(x,y)
#' return(ks$statistic)}
#'
#' mapply(ks_var, x=sub_x, y=y)
#'
#'
#' }
#'
#' ### Percental Difference in Mode Categorie ###
#' PERC_MODECOUNT2 <- function(x, y, i) {
#'
#' sub_x<-x[i,]
#'
#' perc_modecount_var<-function(x,y,i){
#' a <- as.vector(table(x[x == Mode(y)])) / NROW(stats::na.omit(x))
#' b <- as.vector(table(y[y == Mode(y)])) / NROW(stats::na.omit(y))
#' c <- a - b
#' return(c)}
#'
#' mapply(perc_modecount_var, x=sub_x, y=y)
#'
#' }
#'
#' ### Absolute Percental Difference in Mode Categorie ###
#' ABS_PERC_MODECOUNT2 <- function(x, y, i) {
#'
#' sub_x<-x[i,]
#'
#' abs_perc_modecount_var<-function(x,y){
#' a <- as.vector(table(x[x == Mode(y)])) / NROW(stats::na.omit(x))
#' b <- as.vector(table(y[y == Mode(y)])) / NROW(stats::na.omit(y))
#' c <- abs(a - b)
#' return(c)}
#'
#' mapply(abs_perc_modecount_var, x=sub_x, y=y)
#' }
#'
#'
#' PROP_DIFF2 <- function(x, i, y) {
#' xi<-x[i,]
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' c <- a - b
#' return(c)
#' }
#'
#' ABS_PROP_DIFF2 <- function(x, i, y) {
#' xi<-x[i,]
#' a <- as.numeric(as.data.frame(xi) %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' b <- as.numeric(y %>%
#' dplyr::summarise(dplyr::across(tidyselect::everything(), \(x) mean(x, na.rm = TRUE))))
#' c <- abs(a - b)
#' return(c)
#' }
#'
#'
#' ################################
#' ### Subfunction to bootstrap ###
#' ################################
#'
#' subfunc_diffplotter3 <- function(x, y, samp = 1, nboots = nboots, func = func,
#' func_name="none", ci_type="perc", alpha=0.05, conf_adjustment=NULL) {
#'
#'
#' #######################################################
#' ### loop to bootstrap for every Variable in data frame ###
#' #######################################################
#' boot <- boot(data = as.data.frame(x), y = as.data.frame(y), statistic = get(func[1]), R = nboots, ncpus = parallel::detectCores(), parallel = "multicore")
#'
#' ### Make data to a data frame ###
#' #t_vec <- getoutboot(bootlist, value = "t0")
#' t_vec<-as.numeric(boot$t0)
#'
#' #########################
#' ### Bootstrap CI & SE ###
#' #########################
#' getCI <- function(x,w,ci_type, varnames, alpha) {
#' suppressWarnings(b1 <- boot::boot.ci(x,type = ci_type, conf = (1-alpha),index=w))
#' ## extract info for all CI types
#' tab <- t(sapply(b1[-(1:3)],function(x) utils::tail(c(x),2)))
#' ## combine with metadata: CI method, index
#' tab <- cbind(w,rownames(tab),as.data.frame(tab))
#' if (ci_type=="norm") colnames(tab) <- c("index","method","lwr","upr")
#' if (ci_type=="perc") colnames(tab) <- c("index","method","lwr","upr")
#' tab
#' }
#'
#' ### function to get boot.cis ###
#' if (nboots>=2) {
#'
#'
#' ## do it for both parameters
#'
#' if(ci_type=="norm") cis<-do.call(rbind,lapply(1:ncol(x),getCI,x=boot, ci_type="norm", alpha=alpha, varnames= colnames(x)))
#' if(ci_type=="perc") cis<-do.call(rbind,lapply(1:ncol(x),getCI,x=boot, ci_type="perc", alpha=alpha,varnames= colnames(x)))
#' lower_ci<- cis[,(ncol(cis)-1)]
#' upper_ci<- cis[,(ncol(cis))]
#'
#' alpha_adjusted<-alpha/length(x)
#'
#' if(ci_type=="norm") cis<-do.call(rbind,lapply(1:ncol(x),getCI,x=boot, ci_type="norm", alpha=alpha_adjusted, varnames= colnames(x)))
#' if(ci_type=="perc") cis<-do.call(rbind,lapply(1:ncol(x),getCI,x=boot, ci_type="perc", alpha=alpha_adjusted, varnames= colnames(x)))
#' lower_ci_adjusted<- cis[,(ncol(cis)-1)]
#' upper_ci_adjusted<- cis[,(ncol(cis))]
#'
#' se_vect<- as.numeric(sub(".*\\s", "", utils::capture.output(boot)[12:(11+length(x))]))
#'
#' }
#'
#' ############################
#' ### Analytical CI and Se ###
#' ############################
#'
#' if (nboots == 0){
#'
#' alpha_adjusted<-alpha/length(x)
#'
#' if (func_name=="d_mean" |
#' func_name=="d_prop") {
#'
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=F, method="d_mean")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=F, method="d_mean")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=F, method="d_mean")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=F, method="d_mean")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=F, method="d_mean")
#' }
#'
#' if (func_name== "ad_mean" |
#' func_name== "ad_prop" |
#' func_name== "ad_median") {
#'
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=T, method="d_mean")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=T, method="d_mean")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=T, method="d_mean")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=T, method="d_mean")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=T, method="d_mean")
#' }
#'
#' if (func_name=="prop_modecat"){
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=F, method="mode_prop")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=F, method="mode_prop")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=F, method="mode_prop")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=F, method="mode_prop")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=F, method="mode_prop")
#' }
#'
#' if (func_name=="abs_prop_modecat"){
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=T, method="mode_prop")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=T, method="mode_prop")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=T, method="mode_prop")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=T, method="mode_prop")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=T, method="mode_prop")
#' }
#'
#' if (func_name=="rel_mean"| func_name=="rel_prop"){
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=F, method="rel_mean")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=F, method="rel_mean")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=F, method="rel_mean")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=F, method="rel_mean")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=F, method="rel_mean")
#' }
#'
#' if (func_name=="abs_rel_mean" | func_name=="abs_rel_prop"){
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=T, method="rel_mean")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=T, method="rel_mean")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=T, method="rel_mean")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=T, method="rel_mean")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=T, method="rel_mean")
#' }
#'
#' if (func_name=="ks" ){
#' lower_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "lower_ci", abs=F, method="ks")
#' upper_ci<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "upper_ci", abs=F, method="ks")
#' se_vect<- se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha),value = "SE", abs=F, method="ks")
#' lower_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "lower_ci", abs=F, method="ks")
#' upper_ci_adjusted<-se_mean_diff3(as.data.frame(x),as.data.frame(y), conf_level=(1-alpha_adjusted),value = "upper_ci", abs=F, method="ks")
#' }
#' }
#'
#' ########################
#' ### weitere schritte ###
#' ########################
#' names <- c(names(x)) ### to align values in plot
#' data <- as.data.frame(t_vec)
#' data$se_vec <- se_vect
#' data$varnames <- names
#' data$ci_lower<-lower_ci
#' data$ci_upper<-upper_ci
#' data$ci_level<- 1-alpha
#'
#' if (is.null(conf_adjustment)==F){
#'
#' data$ci_lower_adjusted<-lower_ci_adjusted
#' data$ci_upper_adjusted<-upper_ci_adjusted
#' data$ci_level_adjusted<- 1-alpha_adjusted
#' }
#'
#'
#' data$n_df<-as.vector(sapply(x,length))
#' data$n_bench<-as.vector(sapply(y,length))
#'
#'
#' if (is.null(conf_adjustment)){
#' names(data) <- c("t_vec", "se_vec", "varnames","ci_lower","ci_upper","ci_level","n_df","n_bench")}
#'
#' if (is.null(conf_adjustment)==F){
#' names(data) <- c("t_vec", "se_vec", "varnames","ci_lower","ci_upper","ci_level", "ci_lower_adjusted",
#' "ci_upper_adjusted","adjusted_ci_level","n_df","n_bench")}
#'
#'
#'
#' data$se_vec <- as.numeric(data$se_vec)
#'
#' data$sample <- samp
#' return(data)
#' }
#'
#'
#'
#'
#'
#'
#' final_data<-function(data, name_dfs, name_benchmarks, summetric=NULL, colors=NULL,
#' shapes=NULL, legendlabels=NULL, legendtitle=NULL , label_x=NULL, label_y=NULL,
#' summet_size=NULL, plot_title=NULL,funct=NULL, type="comparison",ndigits=3){
#'
#'
#' ###########################
#' ### save data as a list ###
#' ###########################
#'
#' data_list<-list()
#'
#' #######################
#' ### get a summetric ###
#' #######################
#'
#' if (is.null(summetric) == F) label_summet<-
#' calculate_summetric(data=data, summetric = summetric,
#' name_dfs = name_dfs, name_benchmarks = name_benchmarks,
#' funct = funct,ndigits=ndigits)
#'
#' if (is.null(summetric) == T) label_summet=NULL
#'
#' #####################
#' ### Decide colors ###
#' #####################
#'
#' color<-c("blue","red","purple","green","yellow", "brown","orange2", "cyan2",
#' "springgreen3", "beige", "bisque4", "aquamarine", "chocolate",
#' "darkmagenta", "pink", "darksalmon", "gold", "cornflowerblue", "cyan4",
#' "deeppink")
#'
#' if (is.null(colors) == FALSE) {
#' color[1:(length(colors))] <- colors
#' }
#'
#' colors <- color
#'
#' #####################
#' ### Decide shapes ###
#' #####################
#'
#' shape<-c(16,15,17, 18,19,21,22,23,24,25,1,2,0,5,6,7,8,9,10,11,12,13,14)
#'
#' if (is.null(shapes) == FALSE) {
#' shape[1:(length(shapes))] <- shapes
#' }
#'
#' shapes <- shape
#'
#' ############################
#' ### label Legend & title ###
#' ############################
#'
#' def_leglabels<-NULL
#'
#' for (i in 1:length(name_dfs)){
#'
#' label<- paste(name_dfs[i], " vs. ", name_benchmarks[i])
#'
#' if (is.null(def_leglabels)==F) def_leglabels<-c(def_leglabels,label)
#' if (is.null(def_leglabels)==T) def_leglabels<-label
#'
#'
#' }
#'
#' if (is.null(legendlabels) == FALSE) {
#' def_leglabels[1:(length(legendlabels))] <- legendlabels
#' }
#'
#' legendlabels <- def_leglabels
#'
#' legendtitle <- if (is.null(legendtitle)) legendtitle <- "Data frames" else legendtitle<-legendtitle
#'
#' ### label AXIS ###
#' ### label X-Axis
#' if (is.null(label_x)) (if (is.character(funct)){
#' if(type=="comparison"){
#' if (funct=="d_mean") label_x <- "Bias: Difference in Mean"
#' if (funct=="ad_mean") label_x <- "Bias: Absolute Difference in Mean"
#' if (funct=="d_prop") label_x <- "Bias: Difference in Proportions"
#' if (funct=="ad_prop") label_x <- "Bias: Absolute Difference in Proportions"
#' if (funct=="prop_modecat") label_x <- "Bias: Difference in Mode Category"
#' if (funct=="abs_prop_modecat") label_x <- "Bias: Absolute Difference in Mode Category"
#' if (funct=="avg_prop_diff") label_x <- "Bias: Average Difference in All variable Categories"
#' if (funct=="avg_abs_prop_diff") label_x <- "Bias: Absolute Average Difference in All variable Categories"
#' if (funct=="rel_mean") label_x <- "Bias: Relative Difference in Mean"
#' if (funct=="abs_rel_mean") label_x <- "Bias: Absolute Relative Difference in Mean"
#' if (funct=="rel_prop") label_x <- "Bias: Relative Difference in Proportions"
#' if (funct=="abs_rel_prop") label_x <- "Bias: Absolute Relative Difference in Proportions"
#' if (funct=="ad_median") label_x <- "Bias: Absolute Relative Difference in Median"
#' if (funct=="ad_mode") label_x <- "Bias: Absolute Relative Difference in Mode"
#' if (funct=="KS") label_x <- "Bias: KS-Test"
#' }
#' if(type=="nonresponse"){
#' if (funct=="d_mean") label_x <- "Nonresponse Bias:\n Difference in Mean"
#' if (funct=="ad_mean") label_x <- "Nonresponse Bias:\n Absolute Difference in Mean"
#' if (funct=="d_prop") label_x <- "Nonresponse Bias:\n Difference in Proportions"
#' if (funct=="ad_prop") label_x <- "Nonresponse Bias:\n Absolute Difference in Proportions"
#' if (funct=="prop_modecat") label_x <- "Nonresponse Bias:\n Difference in Mode Category"
#' if (funct=="abs_prop_modecat") label_x <- "Nonresponse Bias:\n Absolute Difference in Mode Category"
#' if (funct=="avg_prop_diff") label_x <- "Nonresponse Bias:\n Average Difference in All variable Categories"
#' if (funct=="avg_abs_prop_diff") label_x <- "Nonresponse Bias:\n Absolute Average Difference in All variable Categories"
#' if (funct=="rel_mean") label_x <- "Nonresponse Bias:\n Relative Difference in Mean"
#' if (funct=="abs_rel_mean") label_x <- "Nonresponse Bias:\n Absolute Relative Difference in Mean"
#' if (funct=="rel_prop") label_x <- "Nonresponse Bias:\n Relative Difference in Proportions"
#' if (funct=="abs_rel_prop") label_x <- "Nonresponse Bias:\n Absolute Relative Difference in Proportions"
#' if (funct=="ad_median") label_x <- "Nonresponse Bias:\n Absolute Relative Difference in Median"
#' if (funct=="ad_mode") label_x <- "Nonresponse Bias:\n Absolute Relative Difference in Mode"
#' if (funct=="KS") label_x <- "Nonresponse Bias:\n KS-Test"
#' }
#'
#' } else label_x <- "Difference-Metric")
#'
#' ### label Y-Axis
#' if (is.null(label_y)) label_y <- "Variables"
#'
#'
#' #######################
#' ### add all to list ###
#' #######################
#'
#' data_list[[1]] <- data
#' data_list[[2]] <- label_summet
#' data_list[[3]] <- colors
#' data_list[[4]] <- shapes
#' data_list[[5]] <- legendlabels
#' data_list[[6]] <- legendtitle
#' data_list[[7]] <- label_x
#' data_list[[8]] <- label_y
#' data_list[[9]] <- as.character(funct)
#' data_list[[10]] <- summetric
#' data_list[[11]] <- summet_size
#' data_list[[12]] <- type
#' data_list[[13]] <- plot_title
#' data_list[[14]] <- name_dfs
#' data_list[[15]] <- name_benchmarks
#'
#'
#' names(data_list)<-c("data","label_summetric","colors","shapes","legendlabels",
#' "legendtitle","label_x","label_y","measure","summet","summet_size",
#' "comparison_type","plot_title","name_dfs","name_benchmarks")
#'
#'
#'
#' return(data_list)
#'
#'
#'
#' }
#'
#'
#'
#' se_mean_diff3<-function(df1,df2, conf_level =0.95, value="lower_ci", abs=F, method="d_mean"){
#'
#' ### ci function for single variables ###
#' se_mean_diff_var<-function(var1, var2, conf_level =0.95,value="lower_ci", abs=F, method="d_mean"){
#'
#' var1<-var1[stats::complete.cases(var1)]
#' var2<-var2[stats::complete.cases(var2)]
#' alpha<-1-conf_level
#'
#'
#'
#' if (method=="d_mean") {
#' #SE<- sqrt(stats::var(var1)/length(var1)+stats::var(var2)/length(var2))
#' SE<- sqrt(stats::var(var1)/length(var1))
#'
#' if(abs==F){
#' upper<- base::mean(var1)-base::mean(var2) + stats::qnorm(1-alpha/2) * SE
#' lower<- base::mean(var1)-base::mean(var2) - stats::qnorm(1-alpha/2) * SE
#' }
#'
#' if (abs==T){
#' upper<- abs(mean(var1)-base::mean(var2)) + stats::qnorm(1-alpha/2) * SE
#' lower<- abs(mean(var1)-base::mean(var2)) - stats::qnorm(1-alpha/2) * SE
#' }
#' }
#'
#' if (method=="mode_prop") {
#'
#' p1 <- table(var1[var1==Mode(var2)])/length(var1)
#' p2 <- table(var2[var2==Mode(var2)])/length(var2)
#'
#'
#' #SE<- sqrt(p1*(1-p1)/length(var1)+p2*(1-p2)/length(var2))
#' SE<- sqrt(p1*(1-p1)/length(var1))
#'
#' if(abs==F){
#' upper<- p1-p2 + stats::qnorm(1-alpha/2) * SE
#' lower<- p1-p2 - stats::qnorm(1-alpha/2) * SE}
#'
#'
#' if (abs==T){
#' upper<- abs(p1-p2) + stats::qnorm(1-alpha/2) * SE
#' lower<- abs(p1-p2) - stats::qnorm(1-alpha/2) * SE}
#'
#' }
#'
#' if (method=="rel_mean") {
#'
#'
#' #SE <- sqrt((stats::var(var1)/length(var1) + stats::var(var2)/length(var2)) / (mean(var1)-mean(var2))^2)
#' var_rel <- (1/(base::mean(var2, na.rm=T))^2)*(stats::var(var1, na.rm=T))
#' SE<-sqrt(var_rel)/sqrt(length(var1[is.na(var1)==F]))
#' rel_diff_mean<- (base::mean(var1, na.rm=T)-base::mean(var2, na.rm=T))/base::mean(var2, na.rm=T)
#'
#' if(abs==F){
#' upper<- rel_diff_mean + stats::qnorm(1-alpha/2) * SE
#' lower<- rel_diff_mean - stats::qnorm(1-alpha/2) * SE}
#'
#'
#' if (abs==T){
#' upper<- abs(rel_diff_mean) + stats::qnorm(1-alpha/2) * SE
#' lower<- abs(rel_diff_mean) - stats::qnorm(1-alpha/2) * SE}
#'
#' }
#'
#' ### return ###
#' if (value=="lower_ci") return(lower)
#' if (value=="upper_ci") return(upper)
#' if (value=="SE") return(SE)
#'
#' }
#'
#' ### ci function for whole data frame ###
#' mapply(se_mean_diff_var, var1=df1, var2=df2, value = value, abs=abs, method=method)
#'
#' }
#'
#'
#'
#'
#'
#'
#'
#'
#'
#'
#'
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.