Description Usage Arguments Details Author(s) References See Also Examples
This function returns the minimum sample size required for estimating a double difference of means subjecto to predefined errors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
N |
The maximun population size between the groups (strata) that we want to compare. |
mu1 |
The value of the estimated mean of the variable of interes for the first population. |
mu2 |
The value of the estimated mean of the variable of interes for the second population. |
mu3 |
The value of the estimated mean of the variable of interes for the third population. |
mu4 |
The value of the estimated mean of the variable of interes for the fourth population. |
sigma1 |
The value of the estimated variance of the variable of interes for the first population. |
sigma2 |
The value of the estimated mean of a variable of interes for the second population. |
sigma3 |
The value of the estimated variance of the variable of interes for the third population. |
sigma4 |
The value of the estimated mean of a variable of interes for the fourth population. |
DEFF |
The design effect of the sample design. By default |
conf |
The statistical confidence. By default conf = 0.95. By default |
cve |
The maximun coeficient of variation that can be allowed for the estimation. |
rme |
The maximun relative margin of error that can be allowed for the estimation. |
T |
The overlap between waves. By default |
R |
The correlation between waves. By default |
plot |
Optionally plot the errors (cve and margin of error) against the sample size. |
Note that the minimun sample size to achieve a relative margin of error \varepsilon is defined by:
n = \frac{n_0}{1+\frac{n_0}{N}}
Where
n_0=\frac{z^2_{1-\frac{alpha}{2}}S^2}{\varepsilon^2 μ^2}
and S^2=(σ_1^2 + σ_2^2 + σ_3^2 + σ_4^2) * (1 - (T * R)) * DEFF Also note that the minimun sample size to achieve a coefficient of variation cve is defined by:
n = \frac{S^2}{|(\bar{y}_1-\bar{y}_2) - (\bar{y}_3-\bar{y}_4) |^2 cve^2 + \frac{S^2}{N}}
Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, cve=0.05, rme=0.03)
ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, cve=0.05, rme=0.03, plot=TRUE)
ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, DEFF=3.45, conf=0.99, cve=0.03,
rme=0.03, plot=TRUE)
#############################
# Example with BigLucy data #
#############################
data(BigLucyT0T1)
attach(BigLucyT0T1)
BigLucyT0 <- BigLucyT0T1[Time == 0,]
BigLucyT1 <- BigLucyT0T1[Time == 1,]
N1 <- table(BigLucyT0$ISO)[1]
N2 <- table(BigLucyT0$ISO)[2]
N <- max(N1,N2)
BigLucyT0.yes <- subset(BigLucyT0, ISO == "yes")
BigLucyT0.no <- subset(BigLucyT0, ISO == "no")
BigLucyT1.yes <- subset(BigLucyT1, ISO == "yes")
BigLucyT1.no <- subset(BigLucyT1, ISO == "no")
mu1 <- mean(BigLucyT0.yes$Income)
mu2 <- mean(BigLucyT0.no$Income)
mu3 <- mean(BigLucyT1.yes$Income)
mu4 <- mean(BigLucyT1.no$Income)
sigma1 <- sd(BigLucyT0.yes$Income)
sigma2 <- sd(BigLucyT0.no$Income)
sigma3 <- sd(BigLucyT1.yes$Income)
sigma4 <- sd(BigLucyT1.no$Income)
# The minimum sample size for simple random sampling
ss4ddm(N, mu1, mu2, mu3, mu4, sigma1, sigma2, sigma3, sigma4,
DEFF=1, conf=0.95, cve=0.001, rme=0.001, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4ddm(N, mu1, mu2, mu3, mu4, sigma1, sigma2, sigma3, sigma4,
DEFF=3.45, conf=0.99, cve=0.03, rme=0.03, plot=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.