VE.Jk.CBS.HT.Total.Hajek | R Documentation |
Computes the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator for the Hajek estimator of a total. It uses the Horvitz-Thompson (1952) variance form.
VE.Jk.CBS.HT.Total.Hajek(VecY.s, VecPk.s, MatPkl.s, N)
VecY.s |
vector of the variable of interest; its length is equal to n, the sample size. Its length has to be the same as that of |
VecPk.s |
vector of the first-order inclusion probabilities; its length is equal to n, the sample size. Values in |
MatPkl.s |
matrix of the second-order inclusion probabilities; its number of rows and columns equals n, the sample size. Values in |
N |
the population size. It must be an integer or a double-precision scalar with zero-valued fractional part. |
For the population total of the variable y:
t = ∑_{k\in U} y_k
the approximately unbiased Hajek (1971) estimator of t is given by:
\hat{t}_{Hajek} = N \frac{∑_{k\in s} w_k y_k}{∑_{k\in s} w_k}
where w_k=1/π_k and π_k denotes the inclusion probability of the k-th element in the sample s. The variance of \hat{t}_{Hajek} can be estimated by the Campbell(1980); Berger-Skinner(2005) unequal probability jackknife variance estimator (implemented by the current function):
\hat{V}(\hat{t}_{Hajek}) = ∑_{k\in s}∑_{l\in s} \frac{π_{kl}-π_kπ_l}{π_{kl}} \varepsilon_k \varepsilon_l
where
\varepsilon_k = ≤ft(1-\tilde{w}_k\right) ≤ft(\hat{t}_{Hajek}-\hat{t}_{Hajek(k)}\right)
with
\tilde{w}_k = \frac{w_k}{∑_{l\in s} w_l}
and
\hat{t}_{Hajek(k)} = N \frac{∑_{l\in s, l\neq k} w_l y_l}{∑_{l\in s, l\neq k} w_l}
The function returns a value for the estimated variance.
Emilio Lopez Escobar.
Campbell, C. (1980) A different view of finite population estimation. Proceedings of the Survey Research Methods Section of the American Statistical Association, 319–324.
Berger, Y. G. and Skinner, C. J. (2005) A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society B, 67, 79–89.
Hajek, J. (1971) Comment on An essay on the logical foundations of survey sampling by Basu, D. in Foundations of Statistical Inference (Godambe, V.P. and Sprott, D.A. eds.), p. 236. Holt, Rinehart and Winston.
Horvitz, D. G. and Thompson, D. J. (1952) A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association, 47, 663–685.
VE.Jk.Tukey.Total.Hajek
VE.Jk.CBS.SYG.Total.Hajek
VE.Jk.B.Total.Hajek
VE.Jk.EB.SW2.Total.Hajek
data(oaxaca) #Loads the Oaxaca municipalities dataset pik.U <- Pk.PropNorm.U(373, oaxaca$HOMES00) #Reconstructs the 1st order incl. probs. s <- oaxaca$sHOMES00 #Defines the sample to be used N <- dim(oaxaca)[1] #Defines the population size y1 <- oaxaca$POP10 #Defines the variable of interest y1 y2 <- oaxaca$POPMAL10 #Defines the variable of interest y2 #This approximation is only suitable for large-entropy sampling designs pikl.s <- Pkl.Hajek.s(pik.U[s==1]) #Approx. 2nd order incl. probs. from s #Computes the var. est. of the Hajek total point estimator using y1 VE.Jk.CBS.HT.Total.Hajek(y1[s==1], pik.U[s==1], pikl.s, N) #Computes the var. est. of the Hajek total point estimator using y2 VE.Jk.CBS.HT.Total.Hajek(y2[s==1], pik.U[s==1], pikl.s, N)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.