An efficient tool for fitting nested mixture models based on a shared set of atoms via Markov Chain Monte Carlo and variational inference algorithms. Specifically, the package implements the common atoms model (Denti et al., 2023), its finite version (similar to D'Angelo et al., 2023), and a hybrid finite-infinite model (D'Angelo and Denti, 2024). All models implement univariate nested mixtures with Gaussian kernels equipped with a normal-inverse gamma prior distribution on the parameters. Additional functions are provided to help analyze the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, D’Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>, D’Angelo, Denti (2024) <doi:10.1214/24-BA1458>.
Package details |
|
---|---|
Author | Francesco Denti [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-5034-7414>), Laura D'Angelo [aut] (ORCID: <https://orcid.org/0000-0003-2978-4702>) |
Maintainer | Francesco Denti <francescodenti.personal@gmail.com> |
License | MIT + file LICENSE |
Version | 0.0.2 |
URL | https://github.com/fradenti/sanba |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.