sanba: Fitting Shared Atoms Nested Models via MCMC or Variational Bayes

An efficient tool for fitting nested mixture models based on a shared set of atoms via Markov Chain Monte Carlo and variational inference algorithms. Specifically, the package implements the common atoms model (Denti et al., 2023), its finite version (similar to D'Angelo et al., 2023), and a hybrid finite-infinite model (D'Angelo and Denti, 2024). All models implement univariate nested mixtures with Gaussian kernels equipped with a normal-inverse gamma prior distribution on the parameters. Additional functions are provided to help analyze the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, D’Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>, D’Angelo, Denti (2024) <doi:10.1214/24-BA1458>.

Package details

AuthorFrancesco Denti [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-5034-7414>), Laura D'Angelo [aut] (ORCID: <https://orcid.org/0000-0003-2978-4702>)
MaintainerFrancesco Denti <francescodenti.personal@gmail.com>
LicenseMIT + file LICENSE
Version0.0.2
URL https://github.com/fradenti/sanba
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("sanba")

Try the sanba package in your browser

Any scripts or data that you put into this service are public.

sanba documentation built on Aug. 8, 2025, 6:15 p.m.