The goal of sanba
is to estimate Bayesian nested mixture models via
MCMC and VI methods. Specifically, the package implements the common
atoms model (Denti et al., 2023) and hybrid finite-infinite models
(D’Angelo and Denti, 2024). All models use Gaussian mixtures with a
normal-inverse-gamma prior distribution on the parameters. Additional
functions are provided to help analyzing the results of the fitting
procedure.
You can install the development version of sanba
from
GitHub with:
# install.packages("devtools")
devtools::install_github("Fradenti/sanba")
library(sanba)
set.seed(123)
y <- c(rnorm(160), rnorm(40, 5))
g <- rep(1:2, rep(100, 2))
plot(density(y[g==1]), xlim = c(-5,10), main = "Group-specific density")
lines(density(y[g==2]), col = 2)
out_mcmc <- fit_CAM(y = y, group = g, est_method = "MCMC", mcmc_param = list(nrep = 5000, burn=3000))
#> Warning in sample_CAM(y, group, prior_param = prior_param, mcmc_param =
#> mcmc_param): Increase maxK: all the provided distributional mixture components
#> were used. Check '$warnings' to see when it happened.
out_mcmc
#>
#> MCMC results for CAM
#> -----------------------------------------------
#> Model estimated on 200 total observations and 2 groups
#> Groups sample sizes: 100, 100
#>
#> Size of the MCMC sample (after burn-in): 2000
#> Total MCMC iterations performed: 5000
#> Elapsed time: 0.632 secs
plot(out_mcmc)
#> Output truncated at 2 for mu.
library(sanba)
set.seed(123)
y <- c(rnorm(160), rnorm(40, 5))
g <- rep(1:2, rep(100, 2))
plot(density(y[g==1]), xlim = c(-5,10), main = "Group-specific density")
lines(density(y[g==2]), col = 2)
out_vi <- fit_fiSAN(y, group = g, est_method = "VI", vi_param = list(n_runs = 100))
out_vi
#>
#> Variational inference results for fiSAN
#> ----------------------------------------------
#> Model estimated on 200 total observations and 2 groups
#> Groups sample sizes: 100, 100
#>
#> Threshold: 1e-06
#> ELBO value: -171.476
#> Best run out of 100
#> Convergence reached in 291 iterations
#> Elapsed time: 0.101 secs
plot(out_vi)
D’Angelo, L., and Denti, F. (2024). A Finite-Infinite Shared Atoms Nested Model for the Bayesian Analysis of Large Grouped Data Sets. Bayesian Analysis
Denti, F., Camerlenghi, F., Guindani, M., Mira, A., 2023. A Common Atoms Model for the Bayesian Nonparametric Analysis of Nested Data. Journal of the American Statistical Association. 118(541), 405–416.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.