Nothing
"_PACKAGE"
#' sars: Fit and compare species-area relationship models using multimodel inference
#'
#' @name sars-package
#'
#' @description This package provides functions to fit twenty models to
#' species-area relationship (SAR) data (see Triantis et al. 2012), plot the
#' model fits, and to construct a multimodel SAR curve using information
#' criterion weights. A number of additional SAR functions are provided, e.g.
#' to fit the log-log power model, the general dynamic model of island
#' biogeography (GDM), Coleman's Random Placement model, and piecewise ISAR
#' models (i.e. models with thresholds in the ISAR).
#' @details Functions are provided to fit 20 individual SAR models. Nineteen are
#' fitted using non-linear regression, whilst a single model (the linear
#' model) is fitted using linear regression. Each model has its own function
#' (e.g. \code{\link{sar_power}}). A set of multiple model fits can be
#' combined into a fit collection (\code{\link{sar_multi}}). Plotting
#' functions (\code{\link{plot.sars}}) are provided that enable individual
#' model fits to be plotted on their own, or the fits of multiple models to be
#' overlayed on the same plot. Model fits can be validated using a number of
#' checks, e.g. the normality and homogeneity of the model residuals can be
#' assessed.
#'
#' A multimodel SAR curve can be constructed using the
#' \code{\link{sar_average}} function. This fits up to twenty SAR models and
#' constructs the multimodel curve (with confidence intervals) using
#' information criterion weights (see \code{\link{summary.sars}} to calculate
#' a table of models ranked by information criterion weight). The
#' \code{\link{plot.multi}} functions enables the multimodel SAR curve to be
#' plotted with or without the fits of the individual models.
#'
#' Other SAR related functions include: (i) \code{\link{lin_pow}}, which fits
#' the log-log power model and enables comparison of the model parameters with
#' those calculated using the non-linear power model, (ii) \code{\link{gdm}},
#' which fits the general dynamic model of island biogeography (Whittaker et
#' al. 2008) using several different functions, and (iii)
#' \code{\link{coleman}}, which fits Coleman's (1981) random placement model
#' to a species-site abundance matrix. Version 1.3.0 has added functions for
#' fitting, evaluating and plotting a range of commonly used piecewise SAR
#' models (\code{\link{sar_threshold}}).
#' @author Thomas J. Matthews and Francois Guilhaumon
#' @references Coleman, B. D. (1981). On random placement and species-area
#' relations. Mathematical Biosciences, 54, 191-215.
#'
#' Guilhaumon, F., Mouillot, D., & Gimenez, O. (2010). mmSAR: an R-package for
#' multimodel species–area relationship inference. Ecography, 33, 420-424.
#'
#' Matthews, T.J., Guilhaumon, F., Triantis, K.A, Borregaard, M.K., &
#' Whittaker, R.J. (2015b) On the form of species–area relationships in
#' habitat islands and true islands. Global Ecology & Biogeography. DOI:
#' 10.1111/geb.12269.
#'
#' Triantis, K.A., Guilhaumon, F. & Whittaker, R.J. (2012) The island
#' species–area relationship: biology and statistics. Journal of Biogeography,
#' 39, 215-231.
#'
#' Whittaker, R.J., Triantis, K.A. & Ladle, R.J. (2008) A general dynamic
#' theory of oceanic island biogeography. Journal of Biogeography, 35,
#' 977-994.
#' @seealso \url{https://github.com/txm676/sars}
#' @examples
#' data(galap, package = "sars")
#' #fit the power model
#' fit <- sar_power(galap)
#' summary(fit)
#' plot(fit)
#'
#' #Construct a multimodel averaged SAR curve, using no grid_start simply
#' #for speed (not recommended - see documentation for sar_average())
#' fit_multi <- sar_average(data = galap, grid_start = "none")
#' summary(fit_multi)
#' plot(fit_multi)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.