Description Details Author(s) References See Also Examples
Implements the sparse and smooth functional clustering (SaS-Funclust) method (Centofanti et al. (2021) <arXiv:2103.15224>) that aims to classify a sample of curves into homogeneous groups while jointly detecting the most informative portions of domain.
Package: | sasfunclust |
Type: | Package |
Version: | 1.0.0 |
Date: | 2021-04-01 |
License: | GPL-3 |
Fabio Centofanti, Antonio Lepore, Biagio Palumbo
Centofanti, F., Lepore, A., & Palumbo, B. (2021). Sparse and Smooth Functional Data Clustering. arXiv preprint arXiv:2103.15224.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Not run:
n_i=20
train<-simulate_data("Scenario I",n_i=n_i,sd = 1,sd2_basis = 0.5^2)
lambda_s_seq=10^seq(-4,-3)
lambda_l_seq=10^seq(-1,0)
G_seq=2
mod_cv<-sasfclust_cv(X=train$X,grid=train$grid,G_seq=G_seq,
lambda_l_seq = lambda_l_seq,lambda_s_seq =lambda_s_seq,maxit = 5,K_fold = 2,q=10)
plot(mod_cv)
mod<-sasfclust(X=train$X,grid=train$grid,G_seq=mod_cv$G_opt,
lambda_l = mod_cv$lambda_l_opt,lambda_s_seq =mod_cv$lambda_s_opt,maxit = 5,q=10)
print(aa$clus$classes)
plot(mod)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.