View source: R/satdad_Rfunctions.R
| copArchimaxMevlog | R Documentation |
Copula function, stable tail dependence function, psi function, psi inverse function for Archimax Mevlog models.
copArchimaxMevlog(x, ds, dist = "exp", dist.param = 1)
ellArchimaxMevlog(x, ds)
psiArchimaxMevlog(t, dist = "exp", dist.param = 1)
psiinvArchimaxMevlog(t, dist = "exp", dist.param = 1)
x |
A vector of size |
ds |
An object of class |
dist |
The underlying distribution. A character string among |
dist.param |
The parameter associated with the choice |
t |
A non negative scalar or vector. |
The tail dependence structure is set by a ds object. See Section Value in gen.ds.
Turning to Archimax structures, we follow Charpentier et al. (2014). Their algorithm (4.1 of p. 124) has been applied in rArchimaxMevlog to generate observations sampled from the copula
C(x_1,...,x_d) = \psi(\ell(\psi^{-1}(x_1),...,\psi^{-1}(x_d)))
when \ell is here the stable tail dependence function of a Mevlog model. In this package, the stdf function \ell is completely characterized by the ds object. See ellMevlog.
When the underlying distribution dist is
"exp" ; For a positive \lambda given by dist.param, \psi(t)=\frac{\lambda}{t+\lambda} and \psi^{-1}(t)=\lambda \frac{1-t}{t}.
"gamma" ; For positive scale \sigma and shape a given by dist.param, \psi(t)=\frac{1}{(t+\sigma)^a} and \psi^{-1}(t)=\frac{t^{-1/a}-1}{\sigma}.
"ext" ; \psi(t)=\exp(-t) and \psi^{-1}(t)=-\ln(t).
copArchimaxMevlog returns the copula function C(x_1,...,x_d) = \psi(\ell(\psi^{-1}(x_1),...,\psi^{-1}(x_d))).
ellArchimaxMevlog returns the stable tail dependence function \ell(x_1,...,x_d).
psiArchimaxMevlog returns the psi function \psi(t).
psiinvArchimaxMevlog returns the psi inverse function \psi^{-1}(t).
Cécile Mercadier (mercadier@math.univ-lyon1.fr)
Charpentier, A., Fougères, A.-L., Genest, C. and Nešlehová, J.G. (2014) Multivariate Archimax copulas. Journal of Multivariate Analysis, 126, 118–136.
rArchimaxMevlog, gen.ds, ellMevlog
## Fix a 7-dimensional tail dependence structure
ds7 <- gen.ds(d = 7)
## Fix the parameters for the underlying distribution
(lambda <- runif(1, 0.01, 5))
(shape <- runif(1, 0.01, 5))
(scale <- runif(1, 0.01, 5))
## Fix x and t
x <- c(0.8, 0.9, 0.5, 0.8, 0.4, 0.9, 0.9)
t <- 2
## Evaluate the functions under the underlying exponential construction
copArchimaxMevlog(x = x, ds = ds7, dist = "exp", dist.param = lambda)
ellArchimaxMevlog(x = x, ds = ds7)
psiArchimaxMevlog(t = t, dist = "exp", dist.param = lambda)
psiinvArchimaxMevlog(t = t, dist = "exp", dist.param = lambda)
## Evaluate the functions under the underlying gamma construction
copArchimaxMevlog(x = x, ds = ds7, dist = "gamma", dist.param = c(shape, scale))
ellArchimaxMevlog(x = x, ds = ds7)
psiArchimaxMevlog(t = t, dist = "gamma", dist.param = c(shape, scale))
psiinvArchimaxMevlog(t = t, dist = "gamma", dist.param = c(shape, scale))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.