Recent advance in single-cell RNA sequencing (scRNA-seq) has enabled large-scale transcriptional characterization of thousands of cells in multiple complex tissues, in which accurate cell type identification becomes the prerequisite and vital step for scRNA-seq studies. Currently, the common practice in cell type annotation is to map the highly expressed marker genes with known cell markers manually based on the identified clusters, which requires the priori knowledge and tends to be subjective on the choice of which marker genes to use. Besides, such manual annotation is usually time-consuming.
To address these problems, we introduce a single cell Cluster-based Annotation Toolkit for Cellular Heterogeneity (scCATCH) from cluster marker genes identification to cluster annotation based on evidence-based score by matching the identified potential marker genes with known cell markers in tissue-specific cell taxonomy reference database (CellMatch).
CellMatch includes a panel of 353 cell types and related 686 subtypes associated with 184 tissue types, and 2,096 references of human and mouse.
# install from cran
install.packages("scCATCH")
OR
# install devtools and install
install.packages(pkgs = 'devtools')
devtools::install_github('ZJUFanLab/scCATCH')
The scCATCH mainly includes two function findmarkergene()
and findcelltype()
to realize the automatic annotation for each identified cluster as detailed below:
# sc_data is the scRNA-seq data matrix
# sc_cluster is a character containing the cluster information
obj <- createscCATCH(data = sc_data, cluster = sc_cluster)
# find marker gene for each cluster
obj <- findmarkergene(obj, species, marker, tissue, cancer)
# find cell type for each cluster
obj <- findcelltype(obj)
For more detailed information, please refer to the document and tutorial vignette. Available tissues and cancers see the wiki page
cellmatch
cellmatch
for annotationobj <- createscCATCH(data = Seurat_obj[['RNA']]@data, cluster = as.character(Idents(Seurat_obj)))
Please cite us as Shao et al., scCATCH:Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data, iScience, Volume 23, Issue 3, 27 March 2020. doi: 10.1016/j.isci.2020.100882. PMID:32062421
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.