clustStable | R Documentation |
Generate multiple clustering iterations on a Seurat object containing scRNA-seq data using the provided dimensionality reduction. The function creates a shared nearest neighbor (SNN) graph and assigns clusters using the specified algorithm, then calculates stability metrics across iterations.
clustStable(
n_runs,
seurat_obj,
method = c("louvain", "leiden"),
resolution = 0.8,
dims = 1:10,
n_cores = 1,
verbose = TRUE,
print_plot = TRUE,
seeds = NULL
)
n_runs |
Integer specifying the number of cluster assignments to generate (default: 100) |
seurat_obj |
A Seurat object containing scRNA-seq data with a PCA reduction |
method |
Character string specifying the clustering algorithm to use: either "louvain" or "leiden" |
resolution |
Numeric value specifying the clustering resolution parameter (default: 0.8) |
dims |
Integer vector specifying which PCA dimensions to use (default: 1:10) |
n_cores |
Integer specifying the number of CPU cores to use for parallelization (default: 1) |
verbose |
Whether the function should print summary statistics as it calculates them |
print_plot |
Whether the final violin plot should be automatically printed |
seeds |
A set of seeds of length n_runs for creating clusters |
A list containing the following components:
per_index_means |
Numeric vector of NMI values for each clustering iteration |
ci |
Numeric vector containing the lower and upper bounds of the 95% confidence interval |
cluster_labels |
List of cluster assignments for each iteration |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.