Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ---- eval=FALSE--------------------------------------------------------------
# install.packages("scTEP")
## ----setup--------------------------------------------------------------------
suppressPackageStartupMessages({
library(SummarizedExperiment)
library(scTEP)
})
## ---- eval=FALSE--------------------------------------------------------------
# #Load example data (SCE dataset)
# data("goolam")
# #Get data matrix and label
# expr <- as.matrix(t(assay(goolam)))
# label <- as.character(goolam$label)
# stages = goolam@metadata$cell.stages
## ---- eval=FALSE--------------------------------------------------------------
# dim(expr)
# expr[1:10,1:10]
## ---- eval=FALSE--------------------------------------------------------------
# data = preprocessing(expr)
# data$expr[1:10,1:10]
## ---- eval=FALSE--------------------------------------------------------------
# data("genesets")
# genesets$mmu$`path:mmu00010`
#
# data_fa = scTEP.fa(data, genesets, data_org = 'mmu', seed = 1)
# dim(data_fa)
# data_fa[1:10,1:10]
## ---- eval=FALSE--------------------------------------------------------------
# allCluster = scTEP::clustering(data, seed = 1)
## ---- eval=FALSE--------------------------------------------------------------
# scDHA_res <- scDHA(data_fa, do.clus = T, gen_fil = T, ncores = 16, seed = 1)
## ---- eval=FALSE--------------------------------------------------------------
# idx = which(label == stages[1])
# out = trajectoryinference(data, idx, scDHA_res, allCluster, seed = 1)
# plot(out$g$g)
# r = round(cor(out$pseudotime, as.numeric(factor(label, levels = stages))), digits = 2)
## ---- eval=FALSE--------------------------------------------------------------
# suppressPackageStartupMessages({
# library(irlba)
# library(ggplot2)
# library(uwot)
# })
# # Get 2D emebedding data of the original data.
# cols <- c(
# "#BC3C29FF", "#0072B5FF", "#E18727FF", "#20854EFF", "#7876B1FF", "#6F99ADFF", "#FFDC91FF",
# "#EE4C97FF", "#000075", "#a9a9a9", "#8DD3C7", "#C8EABC", "#FBFBB4", "#D9D7C9", "#C3B4D0",
# "#E39699", "#E9877F", "#A9A0B2", "#97B1BD", "#D9B382",
# "#EBBD63", "#C4D367", "#C7D98C", "#EED0CD", "#F0D1E1",
# "#DED7DA", "#CDB7CE", "#BE88BF", "#C2ADC0", "#CBE5C4",
# "#E4EB9C", "#FFED6F", "#CCFF99", "#33FF00", "#FFDB6D", "#33CC33", "#003300", "#00CC99",
# "#FFFF00", "#CC9900", "#FFFFCC", "#CCFFCC",
# "#2059BB", "#16489E", "#0F3980", "#0E2F68", "#8A3ABF",
# "#7330A0", "#5A3870", "#DE1A64", "#C21A59", "#6D1234", "#3D3135", "#2ABAA4", "#5C9F95",
# "#335650", "#D55C31", "#B07966", "#E2D8D4"
# )
# umap.res <- uwot::umap(latent)
## ---- eval=FALSE--------------------------------------------------------------
# set.seed(1)
# cell_stages <- factor(label, levels = stages)
# label <- as.numeric(factor(label, levels = stages))
# latent <- cbind(umap.res, label) %>% as.data.frame()
#
# # Calculate cluster centroid and create dataframe saving start and end points.
# clus_center <- lapply(1:length(unique(label)), function(cl) colMeans(latent[label == cl, ])) %>%
# do.call(what = rbind)
# colnames(clus_center) <- c("x", "y", "cluster_id")
#
# figure <- ggplot2::ggplot(latent, ggplot2::aes(x = V1, y = V2, color = cell_stages)) +
# ggplot2::geom_point() +
# # Plot the centroid
# ggplot2::geom_point(data = as.data.frame(clus_center), ggplot2::aes(x = x, y = y), color = 'black', size = 2) +
# ggplot2::labs(x = paste0("UMAP1"), y = paste0("UMAP2"), title = paste("Landscape")) +
# ggplot2::theme_classic() +
# ggplot2::scale_color_manual(values = cols) +
# # annotate(geom = "table", x=min(tsne_original$V1),y=min(tsne_original$V2), label = silhou)+
# # scale_color_npg()+
# ggsci::scale_fill_npg() +
# ggplot2::theme(
# legend.position = "right"
# )
# figure
## ---- eval=FALSE--------------------------------------------------------------
# latent <- uwot::umap(scDHA_res$latent) %>% as.data.frame()
# pseudotime = out$pseudotime
# # Calculate cluster centroid and create dataframe saving start and end points.
# figure <- ggplot2::ggplot(latent, ggplot2::aes(x = V1, y = V2)) +
# ggplot2::labs(x = paste0("UMAP1"), y = paste0("UMAP2"), title = paste("Pseudotime landscape")) +
# ggplot2::geom_point(ggplot2::aes(color = pseudotime), size = 2) +
# ggplot2::theme_classic() +
# ggplot2::theme(
# legend.position = "right",
# plot.title = ggplot2::element_text(),
# axis.text = ggplot2::element_text(),
# axis.title = ggplot2::element_text(),
# legend.key.size = ggplot2::unit(1, "cm"), legend.text = ggplot2::element_text(), legend.title = ggplot2::element_text)
# figure
## ---- eval=FALSE--------------------------------------------------------------
# # Draw trajectory plot
# edge_nodes <- out$milestone_network[, 1:2] %>% as.data.frame()
# cluster = out$cluster
# latent <- cbind(umap.res, cluster) %>% as.data.frame()
# cell_stages <- factor(cluster)
#
# # Calculate cluster centroid and create dataframe saving start and end points.
# clus_center <- lapply(1:length(unique(cluster)), function(cl) colMeans(latent[which(cluster == cl), ])) %>%
# do.call(what = rbind)
#
# colnames(clus_center) <- c("x", "y", "cluster_id")
# clulines <- NULL
# for (edge_index in 1:nrow(edge_nodes)) {
# start_cluster <- edge_nodes[edge_index, 1] %>% as.numeric()
# end_cluster <- edge_nodes[edge_index, 2] %>% as.numeric()
# temp_points <- c(
# clus_center[, "x"][start_cluster], clus_center[, "y"][start_cluster],
# clus_center[, "x"][end_cluster], clus_center[, "y"][end_cluster]
# )
# clulines <- rbind(clulines, temp_points)
# }
# colnames(clulines) <- c("x", "y", "xend", "yend")
# clulines <- as.data.frame(clulines)
# clulines$x.mid <- (clulines$x + clulines$xend) / 2
# clulines$y.mid <- (clulines$y + clulines$yend) / 2
#
#
# figure <- ggplot2::ggplot(latent, ggplot2::aes(x = V1, y = V2, color = cell_stages)) +
# ggplot2::geom_point() +
# # Plot the centroid
# ggplot2::geom_point(data = as.data.frame(clus_center), ggplot2::aes(x = x, y = y), color = "black", size = 2) +
# ggplot2::labs(x = paste0("UMAP1"), y = paste0("UMAP2"), title = paste("Trajectory")) +
# # Add Sting to the figure
# ggplot2::geom_segment(ggplot2::aes_string(x = "x.mid", xend = "xend", y = "y.mid", yend = "yend", size = NULL),
# data = clulines, color = "black", size = 1.25
# ) +
# # Add arrow to string
# ggplot2::geom_segment(
# arrow = ggplot2::arrow(length = ggplot2::unit(0.3, "cm"), type = "closed", ends = "last"),
# ggplot2::aes_string(x = "x", xend = "x.mid", y = "y", yend = "y.mid", size = NULL),
# data = clulines, color = "black", size = 1.25
# ) +
# ggplot2::theme_classic() +
# ggplot2::scale_color_manual(values = cols) +
# ggsci::scale_fill_npg() +
# ggplot2::theme(
# legend.position = "right",
# plot.title = ggplot2::element_text(),
# axis.text = ggplot2::element_text(),
# axis.title = ggplot2::element_text(),
# legend.key.size = ggplot2::unit(1, "cm"), legend.text = ggplot2::element_text(), legend.title = ggplot2::element_text()
# )
# figure
## ---- eval=FALSE--------------------------------------------------------------
# #Draw_dev_pseudotime <- function(dataset, label, cell.stages, pseudotime, r, cols) {
# raw <- goolam$label %>% as.character() %>% as.data.frame()
# raw$time <- pseudotime
# raw[, 1] <- factor(raw[, 1], levels = stages)
# colnames(raw) <- c("cell_type","pseudotime")
# figure <- ggplot2::ggplot(raw, ggplot2::aes(y = cell_type, x = pseudotime, color = cell_type)) +
# ggplot2::geom_jitter() +
# ggplot2::labs(x = "Pseudo Time", y = "", title = paste0("Pseudotime")) +
# ggplot2::scale_color_manual(values = cols) +
# ggplot2::theme_classic() +
# ggplot2::theme(
# legend.position = "right",
# plot.title = ggplot2::element_text(size = 20),
# axis.text = ggplot2::element_text(size = 20),
# axis.title = ggplot2::element_text(size = 20),
# legend.key.size = ggplot2::unit(1, "cm"), legend.text = ggplot2::element_text(size = 20), legend.title = ggplot2::element_text(size = 20),
# )
# figure
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.