one_hot: One Hot Encoding

Description Usage Arguments Value Examples

View source: R/one_hot.R

Description

One-hot encoding on categorical variables and replace missing values. It is not needed when creating a standard scorecard model, but required in models that without doing woe transformation.

Usage

1
one_hot(dt, var_skip = NULL, var_encode = NULL, nacol_rm = FALSE, ...)

Arguments

dt

A data frame.

var_skip

Name of categorical variables that will skip for one-hot encoding. Defaults to NULL.

var_encode

Name of categorical variables to be one-hot encoded, Defaults to NULL. If it is NULL, then all categorical variables except in var_skip are counted.

nacol_rm

Logical. One-hot encoding on categorical variable contains missing values, whether to remove the column generated to indicate the presence of NAs. Defaults to FALSE.

...

Additional parameters.

Value

A data frame

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
# load germancredit data
data(germancredit)

library(data.table)
dat = rbind(
  setDT(germancredit)[, c(sample(20,3),21)],
  data.table(creditability=sample(c("good","bad"),10,replace=TRUE)),
  fill=TRUE)

# one hot encoding
## keep na columns from categorical variable
dat_onehot1 = one_hot(dat, var_skip = 'creditability', nacol_rm = FALSE) # default
str(dat_onehot1)
## remove na columns from categorical variable
dat_onehot2 = one_hot(dat, var_skip = 'creditability', nacol_rm = TRUE)
str(dat_onehot2)

scorecard documentation built on Aug. 30, 2020, 5:06 p.m.