| get_index | R Documentation |
Extract a relative biomass/abundance index, center of gravity, effective area occupied, or weighted average
get_index(obj, bias_correct = TRUE, level = 0.95, area = 1, silent = TRUE, ...)
get_index_split(
obj,
newdata,
bias_correct = FALSE,
nsplit = 1,
level = 0.95,
area = 1,
silent = FALSE,
predict_args = list(),
...
)
get_cog(
obj,
bias_correct = FALSE,
level = 0.95,
format = c("long", "wide"),
area = 1,
silent = TRUE,
...
)
get_weighted_average(
obj,
vector,
bias_correct = FALSE,
level = 0.95,
area = 1,
silent = TRUE,
...
)
get_eao(obj, bias_correct = FALSE, level = 0.95, area = 1, silent = TRUE, ...)
obj |
Output from |
bias_correct |
Should bias correction be implemented via
|
level |
The confidence level. |
area |
Grid cell area for area weighting the index. Can be: (1) a
numeric vector of length |
silent |
Silent? |
... |
Passed to |
newdata |
New data (e.g., a prediction grid by year) to pass to
|
nsplit |
The number of splits to do the calculation in. For memory
intensive operations (large grids and/or models), it can be helpful to
do the prediction, area integration, and bias correction on subsets of
time slices (e.g., years) instead of all at once. If |
predict_args |
A list of arguments to pass to |
format |
Long or wide. |
vector |
A numeric vector of the same length as the prediction data, containing the values to be averaged (e.g., depth, temperature). |
For get_index():
A data frame with columns for time, estimate (area-weighted total abundance
or biomass), lower and upper confidence intervals, log estimate, and standard
error of the log estimate.
For get_cog():
A data frame with columns for time, estimate (center of gravity: the
abundance-weighted mean x and y coordinates), lower and upper confidence
intervals, and standard error of center of gravity coordinates.
For get_eao():
A data frame with columns for time, estimate (effective area occupied: the
area required if the population was spread evenly at the arithmetic mean
density), lower and upper confidence intervals, log EAO, and standard error
of the log EAO estimates.
For get_weighted_average():
A data frame with columns for time, estimate (weighted average of the
provided vector, weighted by predicted density), lower and upper confidence
intervals, and standard error of the estimates.
Geostatistical model-based indices of abundance (along with many newer papers):
Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models improve estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic Sciences 71(11): 1655–1666. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1139/cjfas-2013-0508")}
Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72(5): 1297–1310. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/icesjms/fsu243")}
Geostatistical model-based centre of gravity:
Thorson, J.T., Pinsky, M.L., and Ward, E.J. 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol Evol 7(8): 990–1002. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/2041-210X.12567")}
Geostatistical model-based effective area occupied:
Thorson, J.T., Rindorf, A., Gao, J., Hanselman, D.H., and Winker, H. 2016. Density-dependent changes in effective area occupied for sea-bottom-associated marine fishes. Proceedings of the Royal Society B: Biological Sciences 283(1840): 20161853. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1098/rspb.2016.1853")}
Bias correction:
Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fisheries Research 175: 66–74. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.fishres.2015.11.016")}
get_index_sims()
library(ggplot2)
# use a small number of knots for this example to make it fast:
mesh <- make_mesh(pcod, c("X", "Y"), n_knots = 60)
# fit a spatiotemporal model:
m <- sdmTMB(
data = pcod,
formula = density ~ 0 + as.factor(year),
time = "year", mesh = mesh, family = tweedie(link = "log")
)
# prepare a prediction grid:
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))
# Note `return_tmb_object = TRUE` and the prediction grid:
predictions <- predict(m, newdata = nd, return_tmb_object = TRUE)
# biomass index:
ind <- get_index(predictions, bias_correct = TRUE)
ind
ggplot(ind, aes(year, est)) + geom_line() +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4) +
ylim(0, NA)
# do that in 2 chunks
# only necessary for very large grids to save memory
# will be slower but save memory
# note the first argument is the model fit object:
ind <- get_index_split(m, newdata = nd, nsplit = 2, bias_correct = TRUE)
# center of gravity:
cog <- get_cog(predictions, format = "wide")
cog
ggplot(cog, aes(est_x, est_y, colour = year)) +
geom_point() +
geom_linerange(aes(xmin = lwr_x, xmax = upr_x)) +
geom_linerange(aes(ymin = lwr_y, ymax = upr_y)) +
scale_colour_viridis_c()
# effective area occupied:
eao <- get_eao(predictions)
eao
ggplot(eao, aes(year, est)) + geom_line() +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4) +
ylim(0, NA)
# weighted average (e.g., depth-weighted by biomass):
wa <- get_weighted_average(predictions, vector = nd$depth)
wa
ggplot(wa, aes(year, est)) + geom_line() +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.