Functions for dimension reduction through the seeded canonical correlation analysis are provided. A classical canonical correlation analysis (CCA) is one of useful statistical methods in multivariate data analysis, but it is limited in use due to the matrix inversion for large p small n data. To overcome this, a seeded CCA has been proposed in Im, Gang and Yoo (2015) \doi{10.1002/cem.2691}. The seeded CCA is a two-step procedure. The sets of variables are initially reduced by successively projecting cov(X,Y) or cov(Y,X) onto cov(X) and cov(Y), respectively, without loss of information on canonical correlation analysis, following Cook, Li and Chiaromonte (2007) \doi{10.1093/biomet/asm038} and Lee and Yoo (2014) \doi{10.1111/anzs.12057}. Then, the canonical correlation is finalized with the initially-reduced two sets of variables.
Package details |
|
---|---|
Author | Jae Keun Yoo, Bo-Young Kim |
Maintainer | Jae Keun Yoo <peter.yoo@ewha.ac.kr> |
License | GPL (>= 2.0) |
Version | 3.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.