knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(semboottools) library(lavaan)
parameterEstimates_boot(object, level = .95, standardized = FALSE, boot_org_ratio = FALSE, boot_ci_type = c("perc", "bc", "bca.simple"), save_boot_est = TRUE, boot_pvalue = TRUE, boot_pvalue_min_size = 1000, ...)
| Argument | Description |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| object
| A model fitted by lavaan
. |
| level
| Confidence level for the confidence intervals. For example, .95
gives 95% confidence intervals. |
| standardized
| Whether to return standardized estimates. Same as in lavaan::parameterEstimates()
. You can use "std.all"
, "std.lv"
, etc. For detailed standardized results with CIs, use standardizedSolution_boot()
instead. |
| boot_org_ratio
| Whether to calculate how wide the bootstrap confidence interval is compared to the original confidence interval (from delta method). Useful to compare the two methods. |
| boot_ci_type
| Method for forming bootstrap confidence intervals. "perc"
gives percentile intervals; "bc"
and "bca.simple"
give bias-corrected intervals. |
| save_boot_est
| Whether to save the bootstrap estimates in the result. Saved in attributes boot_est_ustd
(free parameters) and boot_def
(user-defined parameters) if TRUE
. |
| boot_pvalue
| Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. |
| boot_pvalue_min_size
| Minimum number of valid bootstrap samples needed to compute asymmetric p-values. If fewer samples are available, p-values will not be computed and will be shown as NA
. |
| ...
| Additional arguments passed to lavaan::parameterEstimates()
. |
# Set seed for reproducibility set.seed(1234) # Generate data n <- 1000 x <- runif(n) - 0.5 m <- 0.20 * x + rnorm(n) y <- 0.17 * m + rnorm(n) dat <- data.frame(x, y, m) # Specify mediation model in lavaan syntax mod <- ' m ~ a * x y ~ b * m + cp * x ab := a * b total := a * b + cp '
# Ensure bootstrap estimates are stored fit <- sem(mod, data = dat, fixed.x = FALSE) fit <- store_boot(fit) est_boot <- parameterEstimates_boot(fit) print(est_boot)
# Change confidence level to 99% est_boot <- parameterEstimates_boot(fit, level = 0.99) # Use bias-corrected (BC) bootstrap confidence intervals est_boot <- parameterEstimates_boot(fit, boot_ci_type = "bc") # Turn off asymmetric bootstrap p-values est_boot <- parameterEstimates_boot(fit, boot_pvalue = FALSE) # Do not save bootstrap estimates (for memory saving) est_boot <- parameterEstimates_boot(fit, save_boot_est = FALSE) # Compute and display bootstrap-to-original CI ratio est_boot <- parameterEstimates_boot(fit, boot_org_ratio = TRUE) # Combine options: BC CI, 99% level, no p-values est_boot <- parameterEstimates_boot(fit, level = 0.99, boot_ci_type = "bc", boot_pvalue = FALSE)
# Print with more decimal places (e.g., 5 digits) print(est_boot, nd = 5) # Print in lavaan-style text format (similar to summary()) print(est_boot, output = "text") # Print as a clean data frame table print(est_boot, output = "table") # Drop specific columns (e.g., "Z") in lavaan.printer format print(est_boot, drop_cols = "Z") # Combine options: 5 decimal digits, text format print(est_boot, nd = 5, output = "text")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.