knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(semboottools) library(lavaan)
standardizedSolution_boot(object, level = .95, type = "std.all", boot_delta_ratio = FALSE, boot_ci_type = c("perc", "bc", "bca.simple"), save_boot_est_std = TRUE, boot_pvalue = TRUE, boot_pvalue_min_size = 1000, ...)
| Argument | Description |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| object
| A model fitted by lavaan
. |
| level
| Confidence level for the confidence intervals. For example, .95
gives 95% confidence intervals. |
| type
| Type of standardized coefficients. Same as in lavaan::standardizedSolution()
, such as "std.all"
or "std.lv"
. |
| boot_delta_ratio
| Whether to calculate how wide the bootstrap confidence interval is compared to the usual confidence interval (delta method). Useful for comparing both methods. |
| boot_ci_type
| Method for forming bootstrap confidence intervals. "perc"
gives percentile intervals; "bc"
and "bca.simple"
give bias-corrected intervals. |
| save_boot_est_std
| Whether to save the bootstrap estimates of standardized coefficients in the result. Saved in the attribute boot_est_std
if TRUE
. |
| boot_pvalue
| Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. |
| boot_pvalue_min_size
| Minimum number of valid bootstrap samples needed to compute asymmetric p-values. If fewer samples are available, p-values will not be computed and will be shown as NA
. |
| ...
| Additional arguments passed to lavaan::standardizedSolution()
. |
# Set seed for reproducibility set.seed(1234) # Generate data n <- 1000 x <- runif(n) - 0.5 m <- 0.20 * x + rnorm(n) y <- 0.17 * m + rnorm(n) dat <- data.frame(x, y, m) # Specify mediation model in lavaan syntax mod <- ' m ~ a * x y ~ b * m + cp * x ab := a * b total := a * b + cp '
# (should use ≥2000 in real studies) fit <- sem(mod, data = dat, se = "boot", bootstrap = 500) std_boot <- standardizedSolution_boot(fit) print(std_boot)
# this function also do not require 'se = "boot"' when fitting the model fit2 <- sem(mod, data = dat, fixed.x = FALSE) fit2 <- store_boot(fit2, R = 500) std_boot2 <- standardizedSolution_boot(fit2) print(std_boot)
# Change confidence level std_boot <- standardizedSolution_boot(fit, level = 0.99) # Use bias-corrected bootstrap CIs std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc") std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple") # Compute delta ratio std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE) # Do not save bootstrap estimates std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE) # Turn off asymmetric bootstrap p-values std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE) # Combine options std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc", boot_delta_ratio = TRUE)
# Print standardized solution in friendly format print(std_boot, output = "text") # Print with more decimal places (e.g., 5 decimal digits) print(std_boot, nd = 5) # Print only bootstrap confidence intervals print(std_boot, boot_ci_only = TRUE) # Print both unstandardized and standardized solution print(std_boot, standardized_only = FALSE) # Combine options: more decimals + show both solutions print(std_boot, nd = 4, standardized_only = FALSE) # Combine options: show only bootstrap CI, 5 decimal places print(std_boot, boot_ci_only = TRUE, nd = 5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.