semboottools::standardizedSolution_boot"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(semboottools)
library(lavaan)

Function Syntax

standardizedSolution_boot(object,
                          level = .95,
                          type = "std.all",
                          boot_delta_ratio = FALSE,
                          boot_ci_type = c("perc", "bc", "bca.simple"),
                          save_boot_est_std = TRUE,
                          boot_pvalue = TRUE,
                          boot_pvalue_min_size = 1000,
                          ...)

Arguments

| Argument | Description | |-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | object | A model fitted by lavaan. | | level | Confidence level for the confidence intervals. For example, .95 gives 95% confidence intervals. | | type | Type of standardized coefficients. Same as in lavaan::standardizedSolution(), such as "std.all" or "std.lv". | | boot_delta_ratio | Whether to calculate how wide the bootstrap confidence interval is compared to the usual confidence interval (delta method). Useful for comparing both methods. | | boot_ci_type | Method for forming bootstrap confidence intervals. "perc" gives percentile intervals; "bc" and "bca.simple" give bias-corrected intervals. | | save_boot_est_std | Whether to save the bootstrap estimates of standardized coefficients in the result. Saved in the attribute boot_est_std if TRUE. | | boot_pvalue | Whether to compute asymmetric p-values based on bootstrap results. Only available when percentile confidence intervals are used. | | boot_pvalue_min_size | Minimum number of valid bootstrap samples needed to compute asymmetric p-values. If fewer samples are available, p-values will not be computed and will be shown as NA. | | ... | Additional arguments passed to lavaan::standardizedSolution(). |

Example

Data and Model

# Set seed for reproducibility
set.seed(1234)

# Generate data
n <- 1000
x <- runif(n) - 0.5
m <- 0.20 * x + rnorm(n)
y <- 0.17 * m + rnorm(n)
dat <- data.frame(x, y, m)

# Specify mediation model in lavaan syntax
mod <- '
  m ~ a * x
  y ~ b * m + cp * x
  ab := a * b
  total := a * b + cp
'

Basic usage: default settings

# (should use ≥2000 in real studies)
fit <- sem(mod, data = dat, se = "boot", bootstrap = 500)
std_boot <- standardizedSolution_boot(fit)
print(std_boot)
# this function also do not require 'se = "boot"' when fitting the model
fit2 <- sem(mod, data = dat, fixed.x = FALSE)
fit2 <- store_boot(fit2, R = 500)
std_boot2 <- standardizedSolution_boot(fit2)
print(std_boot)

standardizedSolution_boot(): Different Options

# Change confidence level
std_boot <- standardizedSolution_boot(fit, level = 0.99)
# Use bias-corrected bootstrap CIs
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bc")
std_boot <- standardizedSolution_boot(fit, boot_ci_type = "bca.simple")
# Compute delta ratio
std_boot <- standardizedSolution_boot(fit, boot_delta_ratio = TRUE)
# Do not save bootstrap estimates
std_boot <- standardizedSolution_boot(fit, save_boot_est_std = FALSE)
# Turn off asymmetric bootstrap p-values
std_boot <- standardizedSolution_boot(fit, boot_pvalue = FALSE)
# Combine options
std_boot <- standardizedSolution_boot(fit,
                                      boot_ci_type = "bc",
                                      boot_delta_ratio = TRUE)

print(): Different Options

# Print standardized solution in friendly format
print(std_boot, output = "text")
# Print with more decimal places (e.g., 5 decimal digits)
print(std_boot, nd = 5)
# Print only bootstrap confidence intervals
print(std_boot, boot_ci_only = TRUE)
# Print both unstandardized and standardized solution
print(std_boot, standardized_only = FALSE)
# Combine options: more decimals + show both solutions
print(std_boot, nd = 4, standardized_only = FALSE)
# Combine options: show only bootstrap CI, 5 decimal places
print(std_boot, boot_ci_only = TRUE, nd = 5)


Try the semboottools package in your browser

Any scripts or data that you put into this service are public.

semboottools documentation built on April 4, 2025, 12:49 a.m.