Description Usage Arguments Details Value References
Calculates the mixing parameter η_j from the scales of the Gaussian/Lorentzian components.
1 | getVoigtParam(scale_G, scale_L)
|
scale_G |
Vector of standard deviations σ_j of the Gaussian components. |
scale_L |
Vector of scale parameters φ_j of the Lorentzian components. |
First, calculate a polynomial average of the scale parameters according to the approximation of Thompson et al. (1987):
f_{G,L} = (σ_j^5 + 2.69σ_j^4φ_j + 2.42σ_j^3φ_j^2 + 4.47σ_j^2φ_j^3 + 0.07σ_jφ_j^4 + φ_j^5)^{1/5}
Then the Voigt mixing parameter η_j is defined as:
η_j = 1.36\frac{φ_j}{f_{G,L}} - 0.47(\frac{φ_j}{f_{G,L}})^2 + 0.11(\frac{φ_j}{f_{G,L}})^3
The Voigt mixing weights for each peak, between 0 (Gaussian) and 1 (Lorentzian).
Thompson, Cox & Hastings (1987) "Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al_2 O_3," J. Appl. Crystallogr. 20(2): 79–83, doi: 10.1107/S0021889887087090
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.