Nothing
#' The setartree is a library containing the implementations of SETAR-Tree and SETAR-Forest
#' which are forecasting-specific tree-based models that are in particular suitable for global time series forecasting.
#'
#' If you have problems using setartree, find a bug, or have suggestions, please
#' file an issue on github (bugs/suggestions). If that fails, then you can contact the maintainer
#' directly by email.
#'
#' If you use the package, please cite the following work in your publications:
#'
#' Godahewa, R., Webb, G. I., Schmidt, D., & Bergmeir, C. (2023). SETAR-Tree: A novel and accurate tree algorithm for
#' global time series forecasting. Machine Learning, 112, 2555-2591. \doi{10.1007/s10994-023-06316-x}
#'
#' Demos for using SETAR-Tree and SETAR-Forest are available.
#' To get a list of them, type:
#'
#' \code{library(setartree)}
#'
#' \code{demo()}
#'
#' To execute the SETAR-Tree demo, type:
#'
#' \code{demo(tree_demo)}
#'
#' To execute the SETAR-Forest demo, type:
#'
#' \code{demo(forest_demo)}
#'
#' To fit a SETAR-Tree model either using a list of time series or an embedded input matrix and labels,
#' use the function \code{\link{setartree}}.
#' To fit a SETAR-Forest model either using a list of time series or an embedded input matrix and labels,
#' use the function \code{\link{setarforest}}.
#' To obtain forecasts from a SETAR-Tree or a SETAR-Forest, use the functions \code{\link{forecast.setartree}} and \code{\link{forecast.setarforest}}, respectively.
#'
#' The setartree package also contains three datasets that can be used to train/test the SETAR-Tree and SETAR-Forest models:
#' \code{\link{chaotic_logistic_series}}, \code{\link{web_traffic_train}} and \code{\link{web_traffic_test}}.
#'
#' See the setartree user manual for detailed explanations about the datasets and the parameters taken by each function.
#'
#' Another nice tool is the \code{forecast} package, that can be used to
#' plot the time series together with the forecasts generated by SETAR-Tree or SETAR-Forest.
#'
#' @title Getting started with the setartree package
#' @name setartree-package
# @aliases setartree
#' @docType package
# @encoding UTF-8
# @encoding Latin-1
#' @author Rakshitha Godahewa \email{rakshithagw@@gmail.com}
#'
#' Christoph Bergmeir \email{christoph.bergmeir@@monash.edu}
#'
#' Daniel Schmidt \email{daniel.schmidt@@monash.edu}
#'
#' and Geoffrey Webb \email{geoff.webb@@monash.edu}
#'
#' Department of Data Science and AI, Faculty of Information Technology, Monash University, Australia.
#'
#' \url{https://www.monash.edu/it/dsai}
#'
#' @references
#'
#' Godahewa, R., Webb, G. I., Schmidt, D., & Bergmeir, C. (2023). SETAR-Tree: A novel and accurate tree algorithm for
#' global time series forecasting. Machine Learning, 112, 2555-2591. \doi{10.1007/s10994-023-06316-x}
#'
#'
#' @keywords package setartree forecasting
#' @import methods
#' @import generics
#' @importFrom methods is
#' @importFrom utils tail
#' @importFrom stats as.formula embed glm pf predict predict.glm ts qnorm
#' @importFrom generics forecast
#' @importFrom parallel detectCores makeCluster clusterExport parLapply stopCluster
NULL
# Generics to re-export
#' @export
generics::forecast
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.