Nothing
################################################################################
# #
# sfaR package doc #
# #
################################################################################
#------------------------------------------------------------------------------#
# sfaR package overview #
# Models: + Cross sectional & Pooled data #
# -Stochastic Frontier Analysis #
# -Latent Class Stochastic Frontier Analysis #
# -Sample selection correction for Stochastic Frontier Model #
# Data: Cross sectional data & Pooled data #
#------------------------------------------------------------------------------#
#' sfaR: A package for estimating stochastic frontier models
#'
#' The \pkg{sfaR} package provides a set of tools (maximum likelihood - ML and
#' maximum simulated likelihood - MSL) for various specifications of stochastic
#' frontier analysis (SFA).
#'
#' Three categories of functions are available: \code{\link{sfacross}},
#' \code{\link{sfalcmcross}}, \code{\link{sfaselectioncross}},
#' which estimate different types of frontiers and offer eleven alternative
#' optimization algorithms (i.e., "bfgs", "bhhh", "nr", "nm", "cg", "sann",
#' "ucminf", "mla", "sr1", "sparse", "nlminb").
#'
#' @name sfaR-package
#'
#' @aliases sfaR-package sfaR
#'
#' _SFAR
#'
#' @section sfacross: \code{\link{sfacross}} estimates the basic stochastic
#' frontier analysis (SFA) for cross-sectional or pooled data and allows for
#' ten different distributions for the one-sided error term. These distributions
#' include the exponential, the gamma, the generalized exponential,
#' the half normal, the lognormal, the truncated normal, the truncated skewed
#' Laplace, the Rayleigh, the uniform, and the Weibull distributions.
#' In the case of the gamma, lognormal, and Weibull distributions, maximum
#' simulated likelihood (MSL) is used with the possibility of four specific
#' distributions to construct the draws: halton, generalized halton, sobol and
#' uniform. Heteroscedasticity in both error terms can be implemented, in
#' addition to heterogeneity in the truncated mean parameter in the case of the
#' truncated normal and lognormal distributions. In addition, in the case of the
#' truncated normal distribution, the scaling property can be estimated.
#'
#' @section sfalcmcross: \code{\link{sfalcmcross}} estimates latent class
#' stochastic frontier models (LCM) for cross-sectional or pooled data.
#' It accounts for technological heterogeneity by splitting the observations
#' into a maximum number of five classes. The classification operates based on
#' a logit functional form that can be specified using some covariates (namely,
#' the separating variables allowing the separation of observations in several
#' classes). Only the half normal distribution is available for the one-sided
#' error term. Heteroscedasticity in both error terms is possible. The choice of
#' the number of classes can be guided by several information criteria (i.e.,
#' AIC, BIC, or HQIC).
#'
#' @section sfaselectioncross: \code{\link{sfaselectioncross}} estimates the
#' frontier for cross-sectional or pooled data in the presence of sample
#' selection. The model solves the selection bias due to the correlation
#' between the two-sided error terms in both the selection and the frontier
#' equations. The likelihood can be estimated using five different
#' possibilities: gauss-kronrod quadrature, adaptive integration over hypercubes
#' (hcubature and pcubature), gauss-hermite quadrature, and
#' maximum simulated likelihood. Only the half normal
#' distribution is available for the one-sided error term. Heteroscedasticity
#' in both error terms is possible.
#'
#' @section Bugreport: Any bug or suggestion can be reported using the
#' \code{sfaR} tracker facilities at:
#' \url{https://github.com/hdakpo/sfaR/issues}
#'
#' @author K Hervé Dakpo, Yann Desjeux, Arne Henningsen and Laure Latruffe
#'
# @importFrom base standardGeneric
#' @importFrom stats coefficients dnorm lm model.frame
#' @importFrom stats model.matrix model.response nlminb
#' @importFrom stats pnorm qnorm delete.response fitted
#' @importFrom stats logLik residuals terms vcov formula
#' @importFrom stats integrate runif model.weights nobs
#' @importFrom stats na.pass printCoefmat pt qt na.omit
#' @importFrom stats pchisq qchisq uniroot complete.cases
#' @importFrom methods as new
#' @importFrom Formula as.Formula Formula
#' @importFrom randtoolbox get.primes sobol
#' @importFrom qrng ghalton
#' @import maxLik
#' @importFrom ucminf ucminf
#' @importFrom trustOptim trust.optim
#' @importFrom marqLevAlg mla
#' @importFrom nleqslv nleqslv
#' @importFrom fastGHQuad gaussHermiteData
#' @importFrom cubature hcubature pcubature
#' @importFrom sandwich bread estfun
# @importFrom calculus jacobian
#' @importFrom plm pdata.frame index
#' @importFrom texreg extract createTexreg
#' @importFrom mnorm pmnorm
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.