sftrack
provides modern classes for tracking and movement data,
relying on sf
spatial infrastructure. Tracking data are made of
tracks, i.e. series of locations with at least 2-dimensional spatial
coordinates (x,y), a time index (t), and individual identification (id)
of the object being monitored; movement data are made of trajectories,
i.e. the line representation of the path, composed by steps (the
straight-line segments connecting successive locations). sftrack
is
designed to handle movement of both living organisms and inanimate
objects.
The development and design of the sftrack
package follow three simple
principles:
sftrack
is designed to be as easy to use as
familiar R structures like data.frame
s and sf
objects. sftrack
objects are tidy, and follow the idea that rows are records
(locations) and columns are variable (following the semantics of
tracking and movement data);sftrack
is meant first for users to
use on their data, but also directly designed to address other
developers’ needs for their own tracking packages.To get started, install sftrack
directly from CRAN, or check the
development version on GitHub with the
remotes package:
# To install the stable version from CRAN
install.packages("sftrack")
# To install the dev version with built vignettes
remotes::install_github("mablab/sftrack", ref = "dev", build_vignettes = TRUE)
The dev
version is updated much more frequently and should pass the
majority of CRAN checks. However, if you install the dev
version,
understand it may still contain some bugs. Please submit any bug you
find to the issues page.
sftrack
and sftraj
objectsThe easiest way to create an sftrack
object is to start from a
data.frame
with all information as columns, typically the raw data
extracted from telemetry devices:
library("sftrack")
data(raccoon)
raccoon$timestamp <- as.POSIXct(as.POSIXlt(raccoon$timestamp, tz = "EST5EDT"))
head(raccoon)
#> animal_id latitude longitude timestamp height hdop vdop fix
#> 1 TTP-058 NA NA 2019-01-18 19:02:30 NA 0.0 0.0 NO
#> 2 TTP-058 26.06945 -80.27906 2019-01-18 20:02:30 7 6.2 3.2 2D
#> 3 TTP-058 NA NA 2019-01-18 21:02:30 NA 0.0 0.0 NO
#> 4 TTP-058 NA NA 2019-01-18 22:02:30 NA 0.0 0.0 NO
#> 5 TTP-058 26.06769 -80.27431 2019-01-18 23:02:30 858 5.1 3.2 2D
#> 6 TTP-058 26.06867 -80.27930 2019-01-19 00:02:30 350 1.9 3.2 3D
In order to convert your raw data into an sftrack
object, use the
function as_sftrack()
. The function requires the three main elements
of tracking data:
x
and y
axes (can
be UTM, lat/long, etc., with projection provided in crs
);POSIXct
(or as integer
);my_sftrack <- as_sftrack(
data = raccoon,
coords = c("longitude","latitude"),
time = "timestamp",
group = "animal_id",
crs = 4326)
head(my_sftrack)
#> Sftrack with 6 features and 10 fields (3 empty geometries)
#> Geometry : "geometry" (XY, crs: WGS 84)
#> Timestamp : "timestamp" (POSIXct in EST5EDT)
#> Groupings : "sft_group" (*id*)
#> -------------------------------
#> animal_id latitude longitude timestamp height hdop vdop fix
#> 1 TTP-058 NA NA 2019-01-18 19:02:30 NA 0.0 0.0 NO
#> 2 TTP-058 26.06945 -80.27906 2019-01-18 20:02:30 7 6.2 3.2 2D
#> 3 TTP-058 NA NA 2019-01-18 21:02:30 NA 0.0 0.0 NO
#> 4 TTP-058 NA NA 2019-01-18 22:02:30 NA 0.0 0.0 NO
#> 5 TTP-058 26.06769 -80.27431 2019-01-18 23:02:30 858 5.1 3.2 2D
#> 6 TTP-058 26.06867 -80.27930 2019-01-19 00:02:30 350 1.9 3.2 3D
#> sft_group geometry
#> 1 (id: TTP-058) POINT EMPTY
#> 2 (id: TTP-058) POINT (-80.27906 26.06945)
#> 3 (id: TTP-058) POINT EMPTY
#> 4 (id: TTP-058) POINT EMPTY
#> 5 (id: TTP-058) POINT (-80.27431 26.06769)
#> 6 (id: TTP-058) POINT (-80.2793 26.06867)
summary_sftrack(my_sftrack)
#> group points NAs begin_time end_time length_m
#> 1 TTP-041 223 0 2019-01-18 19:02:30 2019-02-01 18:02:07 10212.55
#> 2 TTP-058 222 0 2019-01-18 19:02:30 2019-02-01 18:02:30 26893.27
While sftrack
objects contain tracking data (locations), they can
easily be converted to movement data (with a step model instead) with
as_sftraj
:
my_sftraj <- as_sftraj(my_sftrack)
head(my_sftraj)
#> Sftraj with 6 features and 10 fields (3 empty geometries)
#> Geometry : "geometry" (XY, crs: WGS 84)
#> Timestamp : "timestamp" (POSIXct in EST5EDT)
#> Grouping : "sft_group" (*id*)
#> -------------------------------
#> animal_id latitude longitude timestamp height hdop vdop fix
#> 1 TTP-058 NA NA 2019-01-18 19:02:30 NA 0.0 0.0 NO
#> 2 TTP-058 26.06945 -80.27906 2019-01-18 20:02:30 7 6.2 3.2 2D
#> 3 TTP-058 NA NA 2019-01-18 21:02:30 NA 0.0 0.0 NO
#> 4 TTP-058 NA NA 2019-01-18 22:02:30 NA 0.0 0.0 NO
#> 5 TTP-058 26.06769 -80.27431 2019-01-18 23:02:30 858 5.1 3.2 2D
#> 6 TTP-058 26.06867 -80.27930 2019-01-19 00:02:30 350 1.9 3.2 3D
#> sft_group geometry
#> 1 (id: TTP-058) POINT EMPTY
#> 2 (id: TTP-058) POINT (-80.27906 26.06945)
#> 3 (id: TTP-058) POINT EMPTY
#> 4 (id: TTP-058) POINT EMPTY
#> 5 (id: TTP-058) LINESTRING (-80.27431 26.06...
#> 6 (id: TTP-058) LINESTRING (-80.2793 26.068...
Both objects can easily be plotted with base R plot functions, which
highlights the fundamental difference between tracking and movement data
(sftrack
on the left; sftraj
on the right):
plot(my_sftrack, main = "Tracking data (locations)")
plot(my_sftraj, main = "Movement data (steps)")
move::Move
and trackeR::trackeRdata
, integrated into
as_sftrack
;ggplot2
);While the foundations of the package are now pretty solid, we are still
dealing with open questions about several aspects of the package,
including the names of sftrack
variables (e.g. coordinates,
timestamps, id and error), the structure of the grouping factor, or the
structure of the error term.
If you have strong opinions or simply want to help on the technical side, we invite you to comment on those open issues here.
We also need to precisely understand what is expected from such a
package. The idea here is to collect all possible use cases for a
trajectory object in R. We know they are multiple, and will contribute
our own use cases — however, we want sftrack
to be as useful as
possible, and to act as a center piece for movement in R, so we need you
to tell us how you would use it. In other words, we want to understand
what you expect from such a package, as a user or as a developer. For
this, we ask you to fill out special issues in the GitHub tracker of the
package, following the ‘Use case’
template.
Use cases do not need to be very complicated, but need to present a specific use in human terms, the technical requirements associated to it, and the input and output of the use case. Such use case could look like this:
[Use case] Amazing plot for trajectory
Use case:
Plot a trajectory using my
special_trajplot
function, which shows [something amazing].Requirements:
spatial coordinates (x,y) as geographic coordinates with projection information
a time (t) as POSIXt object, ordered in time
information that identifies individuals (e.g. animal) for each location
data associated to each location directly accessible
Input: a
sftrack
objectOutput: a plot with [something amazing] about the trajectory
Additional information: See my
special_trajplot
function here [with link].
Another example could be like this:
[Use case] Fill in missing locations in a sequence
Use case: Fill in the missing locations of a trajectory that contains spatial or temporal gaps. (for instance coming from GPS with failed fixes); In other words add in the missing values of a trajectory, i.e. timestamps with no geographic coordinates.
Requirements:
a time (t) as POSIXt object, ordered in time
information that identifies sequences of locations (optional, if several sequences), which could be different circuits of one individual, or different individuals, etc.
sftrack
should be capable of handling/storing missing valuesInput: a
sftrack
objectOutput: a
sftrack
object with additional timestamps for gaps (but otherwise identical in every way to the originalsftrack
)Additional information: See
adehabitatLT::setNA
, which does exactly that onltraj
objects.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.