View source: R/approach_regression_separate.R
regression.train_model | R Documentation |
Function that trains a tidymodels
model via workflows
based on the provided input parameters.
This function allows for cross validating the hyperparameters of the model.
regression.train_model(
x,
seed = 1,
verbose = NULL,
regression.model = parsnip::linear_reg(),
regression.tune = FALSE,
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
regression.response_var = "y_hat",
regression.surrogate_n_comb = NULL,
current_comb = NULL
)
x |
Data.table containing the training data. |
seed |
Positive integer.
Specifies the seed before any code involving randomness is run.
If |
verbose |
String vector or NULL.
Controls verbosity (printout detail level) via one or more of |
regression.model |
A |
regression.tune |
Logical (default is |
regression.tune_values |
Either |
regression.vfold_cv_para |
Either |
regression.recipe_func |
Either |
regression.response_var |
String (default is |
regression.surrogate_n_comb |
Integer (default is |
current_comb |
Integer vector. The current combination of features, passed to verbosity printing function. |
A trained tidymodels
model based on the provided input parameters.
Lars Henry Berge Olsen
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.