setup_approach | R Documentation |
The different choices of approach
take different (optional) parameters,
which are forwarded from explain()
.
See the general usage vignette
for more information about the different approaches.
setup_approach(internal, ...)
## S3 method for class 'combined'
setup_approach(internal, ...)
## S3 method for class 'categorical'
setup_approach(
internal,
categorical.joint_prob_dt = NULL,
categorical.epsilon = 0.001,
...
)
## S3 method for class 'copula'
setup_approach(internal, ...)
## S3 method for class 'ctree'
setup_approach(
internal,
ctree.mincriterion = 0.95,
ctree.minsplit = 20,
ctree.minbucket = 7,
ctree.sample = TRUE,
...
)
## S3 method for class 'empirical'
setup_approach(
internal,
empirical.type = "fixed_sigma",
empirical.eta = 0.95,
empirical.fixed_sigma = 0.1,
empirical.n_samples_aicc = 1000,
empirical.eval_max_aicc = 20,
empirical.start_aicc = 0.1,
empirical.cov_mat = NULL,
model = NULL,
predict_model = NULL,
...
)
## S3 method for class 'gaussian'
setup_approach(internal, gaussian.mu = NULL, gaussian.cov_mat = NULL, ...)
## S3 method for class 'independence'
setup_approach(internal, ...)
## S3 method for class 'regression_separate'
setup_approach(
internal,
regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
...
)
## S3 method for class 'regression_surrogate'
setup_approach(
internal,
regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
regression.surrogate_n_comb =
internal$iter_list[[length(internal$iter_list)]]$n_coalitions - 2,
...
)
## S3 method for class 'timeseries'
setup_approach(
internal,
timeseries.fixed_sigma = 2,
timeseries.bounds = c(NULL, NULL),
...
)
## S3 method for class 'vaeac'
setup_approach(
internal,
vaeac.depth = 3,
vaeac.width = 32,
vaeac.latent_dim = 8,
vaeac.activation_function = torch::nn_relu,
vaeac.lr = 0.001,
vaeac.n_vaeacs_initialize = 4,
vaeac.epochs = 100,
vaeac.extra_parameters = list(),
...
)
internal |
List.
Not used directly, but passed through from |
... |
Arguments passed to specific classes. See below |
categorical.joint_prob_dt |
Data.table. (Optional)
Containing the joint probability distribution for each combination of feature
values.
|
categorical.epsilon |
Numeric value. (Optional)
If |
ctree.mincriterion |
Numeric scalar or vector.
Either a scalar or vector of length equal to the number of features in the model.
The value is equal to 1 - |
ctree.minsplit |
Numeric scalar. Determines minimum value that the sum of the left and right daughter nodes required for a split. The default value is 20. |
ctree.minbucket |
Numeric scalar. Determines the minimum sum of weights in a terminal node required for a split The default value is 7. |
ctree.sample |
Boolean.
If |
empirical.type |
Character. (default = |
empirical.eta |
Numeric scalar.
Needs to be |
empirical.fixed_sigma |
Positive numeric scalar.
The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when conditioning on all different coalitions.
Only used when |
empirical.n_samples_aicc |
Positive integer.
Number of samples to consider in AICc optimization.
The default value is 1000.
Only used for |
empirical.eval_max_aicc |
Positive integer.
Maximum number of iterations when optimizing the AICc.
The default value is 20.
Only used for |
empirical.start_aicc |
Numeric.
Start value of the |
empirical.cov_mat |
Numeric matrix. (Optional)
The covariance matrix of the data generating distribution used to define the Mahalanobis distance.
|
model |
Objects.
The model object that ought to be explained.
See the documentation of |
predict_model |
Function.
The prediction function used when |
gaussian.mu |
Numeric vector. (Optional)
Containing the mean of the data generating distribution.
|
gaussian.cov_mat |
Numeric matrix. (Optional)
Containing the covariance matrix of the data generating distribution.
|
regression.model |
A |
regression.tune_values |
Either |
regression.vfold_cv_para |
Either |
regression.recipe_func |
Either |
regression.surrogate_n_comb |
Positive integer. Specifies the number of unique coalitions to apply to each training observation. The default is the number of sampled coalitions in the present iteration. Any integer between 1 and the default is allowed. Larger values requires more memory, but may improve the surrogate model. If the user sets a value lower than the maximum, we sample this amount of unique coalitions separately for each training observations. That is, on average, all coalitions should be equally trained. |
timeseries.fixed_sigma |
Positive numeric scalar. Represents the kernel bandwidth in the distance computation. The default value is 2. |
timeseries.bounds |
Numeric vector of length two.
Specifies the lower and upper bounds of the timeseries.
The default is |
vaeac.depth |
Positive integer (default is |
vaeac.width |
Positive integer (default is |
vaeac.latent_dim |
Positive integer (default is |
vaeac.activation_function |
An |
vaeac.lr |
Positive numeric (default is |
vaeac.n_vaeacs_initialize |
Positive integer (default is |
vaeac.epochs |
Positive integer (default is |
vaeac.extra_parameters |
Named list with extra parameters to the |
Updated internal object with the approach set up
Martin Jullum
Lars Henry Berge Olsen
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.