knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, fig.height = 5, fig.width = 6, fig.align = "center" )
Sometimes, you will find it necessary to work with several "shapviz" objects at the same time:
To simplify the workflow, {shapviz} offers a "mshapviz" object ("m" like "multi"). You can create it in different ways:
shapviz()
on multiclass XGBoost or LightGBM models.shapviz()
on "kernelshap" or "permshap" objects created from multiclass/multioutput models via the {kernelshap} package.c(Mod_1 = s1, Mod_2 = s2, ...)
on "shapviz" objects s1
, s2
, ...mshapviz(list(Mod_1 = s1, Mod_2 = s2, ...))
The sv_*()
functions mainly use the {patchwork} package to glue the individual plots together. An exception is sv_importance(..., kind = "bar")
, which produces a dodged barplot via {ggplot2}, by default.
library(shapviz) library(ggplot2) library(patchwork) library(xgboost) params <- list(objective = "multi:softprob", num_class = 3, nthread = 1) X_pred <- data.matrix(iris[, -5]) dtrain <- xgb.DMatrix(X_pred, label = as.integer(iris[, 5]) - 1, nthread = 1) fit <- xgb.train(params = params, data = dtrain, nrounds = 50) # Create "mshapviz" object (logit scale) (x <- shapviz(fit, X_pred = X_pred, X = iris)) # Contains "shapviz" objects for all classes all.equal(x[[3]], shapviz(fit, X_pred = X_pred, X = iris, which_class = 3)) # Better names names(x) <- levels(iris$Species) x # SHAP plots sv_importance(x) sv_importance(x, bar_type = "stack") # Same but stacked sv_dependence(x, v = "Petal.Length") + plot_layout(ncol = 1) & ylim(-3, 4) # Same y scale to get impression on strength
library(shapviz) library(lightgbm) # Model params <- list(objective = "multiclass", num_class = 3) X_pred <- data.matrix(iris[, -5]) dtrain <- lgb.Dataset(X_pred, label = as.integer(iris[, 5]) - 1) fit <- lgb.train(params = params, data = dtrain, nrounds = 50) x <- shapviz(fit, X_pred = X_pred, X = iris) sv_importance(x)
Since Kernel SHAP is model agnostic, we get SHAP values on probability scale. To explain log-odds, we would need to pass our own predict function to kernelshap()
.
library(shapviz) library(kernelshap) library(ggplot2) library(patchwork) library(ranger) # Model fit <- ranger(Species ~ ., data = iris, num.trees = 100, probability = TRUE, seed = 1) # "mshapviz" object x <- kernelshap(fit, X = iris[-5], bg_X = iris) shp <- setNames(shapviz(x), levels(iris$Species)) # all.equal(shp[[3]], shapviz(x, which_class = 3)) sv_importance(shp) sv_dependence(shp, v = "Sepal.Width") + plot_layout(ncol = 2) & ylim(-0.06, 0.06)
Let's compare SHAP dependence plots across Species.
library(shapviz) library(ggplot2) library(patchwork) library(xgboost) X_pred <- data.matrix(iris[, -1]) dtrain <- xgb.DMatrix(X_pred, label = iris[, 1], nthread = 1) fit_xgb <- xgb.train(params = list(nthread = 1), data = dtrain, nrounds = 50) # Create "mshapviz" object and split it into subgroups shap_xgb <- shapviz(fit_xgb, X_pred = X_pred, X = iris) x_subgroups <- split(shap_xgb, f = iris$Species) # SHAP analysis sv_importance(x_subgroups, bar_type = "stack") sv_dependence(x_subgroups, v = "Petal.Length") + plot_layout(ncol = 1) & xlim(1, 7) & ylim(-1.4, 2.2)
In the last example, we used a regression model fitted via XGBoost. How does it compare with a linear regression?
library(kernelshap) fit_lm <- lm(Sepal.Length ~ ., data = iris) shap_lm <- shapviz(kernelshap(fit_lm, iris[-1], bg_X = iris)) # Combine "shapviz" objects mshap <- c(lm = shap_lm, xgb = shap_xgb) mshap #> 'mshapviz' object representing 2 'shapviz' objects: #> 'lm': 150 x 4 SHAP matrix #> 'xgb': 150 x 4 SHAP matrix # SHAP analysis sv_importance(mshap) sv_dependence(mshap, v = "Species") & ylim(-0.5, 0.6)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.