sharp-package | R Documentation |
In stability selection and consensus clustering, resampling techniques are used to enhance the reliability of the results. In this package, hyper-parameters are calibrated by maximising model stability, which is measured under the null hypothesis that all selection (or co-membership) probabilities are identical. Functions are readily implemented for the use of LASSO regression, sparse PCA, sparse (group) PLS or graphical LASSO in stability selection, and hierarchical clustering, partitioning around medoids, K means or Gaussian mixture models in consensus clustering.
Package: | sharp |
Type: | Package |
Version: | 1.4.6 |
Date: | 2025-03-24 |
License: | GPL (>= 3) |
Maintainer: | Barbara Bodinier barbara.bodinier@gmail.com |
JStatSoftsharp
\insertRefourstabilityselectionsharp
\insertRefstabilityselectionMBsharp
\insertRefConsensusClusteringsharp
oldpar <- par(no.readonly = TRUE)
par(mar = c(5, 5, 5, 5))
## Regression models
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 100, pk = 50)
# Stability selection
stab <- VariableSelection(xdata = simul$xdata, ydata = simul$ydata)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)
## Graphical models
# Data simulation
set.seed(1)
simul <- SimulateGraphical(n = 100, pk = 20, topology = "scale-free")
# Stability selection
stab <- GraphicalModel(xdata = simul$data)
CalibrationPlot(stab)
summary(stab)
plot(stab)
## PCA models
if (requireNamespace("elasticnet", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateComponents(pk = c(5, 3, 4))
plot(simul)
# Stability selection
stab <- BiSelection(
xdata = simul$data,
ncomp = 3,
implementation = SparsePCA
)
CalibrationPlot(stab)
summary(stab)
SelectedVariables(stab)
}
## PLS models
if (requireNamespace("sgPLS", quietly = TRUE)) {
# Data simulation
set.seed(1)
simul <- SimulateRegression(n = 50, pk = c(10, 20, 30), family = "gaussian")
# Stability selection
stab <- BiSelection(
xdata = simul$xdata, ydata = simul$ydata,
family = "gaussian", ncomp = 3,
implementation = SparsePLS
)
CalibrationPlot(stab)
summary(stab)
plot(stab)
}
par(oldpar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.