Description Usage Arguments Value Author(s) References See Also Examples
Calculation of sharpened responses for bias reduction in function and first derivative estimation, assuming a gaussian kernel is used in bivariate scatterplot smoothing.
1 | LLsharpen(x, y, h)
|
x |
a numeric vector containing the predictor variable values. |
y |
a numeric vector containing the response variable values. |
h |
a numeric vector containing the (scalar) bandwidth. |
a vector containing the sharpened (i.e. perturbed) response values, ready for input into a local linear regression estimator.
W.J. Braun
Choi, E., Hall, P. and Rousson, V. (2000) Data sharpening methods for bias reduction in nonparametric regression. Annals of Statistics 28(5) 1339-1355.
1 2 3 4 5 6 7 8 | speed <- MPG[, 1]
mpg <- MPG[, 2]
h <- dpill(speed, mpg)*2
mpgSharp <- LLsharpen(speed, mpg, h)
mpg.lS <- locpoly(speed, mpgSharp, bandwidth=h, drv=1, degree=1)
mpg.lX <- locpoly(speed, mpg, bandwidth=h, drv=1, degree=1)
plot(mpg.lX, type="l") # unsharpened derivative estimation
lines(mpg.lS, col=2, lty=2) # sharpened derivative estimation
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.