BootKNN | R Documentation |
How to bootstrap with kNN (and DNN)
BootKNN(data, classes, sub="none", nsam=4, nboot=1000, misclass=TRUE, method="knn", ...)
data |
Data frame to classify |
classes |
Character vector of class names |
sub |
Subsample to use (see example) |
nsam |
Number of training items from each level of grouping factor, default 4 |
nboot |
Number of iterations |
misclass |
Calculate misclassification table? |
method |
Either "knn" (class::knn()) or "dnn" (shipunov::Dnn()) |
... |
Further arguments to method functions |
This function samples equal numbers ('nsam') of training items from each level of grouping factor.
It also allows to use subset of data which will be used for sub-sampling of training data.
Returns all predictions as character matrix, each boot is a column
Alexey Shipunov
class::knn
, Dnn
iris.sub <- 1:nrow(iris) %in% seq(1, nrow(iris), 5) iris.bootknn <- BootKNN(iris[, -5], iris[, 5], sub=iris.sub) ## calculate and plot stability st <- apply(iris.bootknn, 1, function(.x) var(as.numeric(as.factor(.x)))) plot(prcomp(iris[, -5])$x, col=iris$Species, pch=ifelse(st == 0, 19, 1)) ## boot Dnn BootKNN(iris[, -5], iris[, 5], nboot=50, method="dnn", k=1, FUN=function(.x) Gower.dist(.x))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.