simCAT | R Documentation |
A CAT simulation with dichotomous items.
simCAT(
resps,
bank,
model = "3PL",
start.theta = 0,
sel.method = "MFI",
cat.type = "variable",
acceleration = 1,
met.weight = "mcclarty",
threshold = 0.3,
rmax = 1,
content.names = NULL,
content.props = NULL,
content.items = NULL,
met.content = "MCCAT",
stop = list(se = 0.3, hypo = 0.015, hyper = Inf),
progress = TRUE
)
resps |
a matrix with responses (0 and 1). The number of columns corresponds to the number of items |
bank |
matrix with item parameters (a, b, c) |
model |
may be |
start.theta |
first theta |
sel.method |
item selection method: may be |
cat.type |
CAT with |
acceleration |
acceleration parameter. Necessary only for progressive method. |
met.weight |
the procedure to calculate the |
threshold |
threshold for |
rmax |
item maximum exposure rate |
content.names |
vector with the contents of the test |
content.props |
desirable proportion of each content in test, in
the same order of |
content.items |
vector indicating the content of each item |
met.content |
content balancing method: |
stop |
list with stopping rule and thresholds
|
progress |
shows progress bar |
For details about formula of selection methods, see select.item
.
a list with five elements
score
estimated theta
convergence
TRUE
if the application ended before reaching the maximum test length
theta.history
estimated theta after each item administration
se.history
standard error after each item administration
prev.resps
previous responses (administered items)
Alexandre Jaloto
Barrada, J. R., Olea, J., Ponsoda, V., & Abad, F. J. (2008). Incorporating randomness in the Fisher information for improving item-exposure control in CATs. British Journal of Mathematical and Statistical Psychology, 61(2), 493–513. 10.1348/000711007X230937
Leroux, A. J., & Dodd, B. G. (2016). A comparison of exposure control procedures in CATs using the GPC model. The Journal of Experimental Education, 84(4), 666–685. 10.1080/00220973.2015.1099511
Magis, D., & Barrada, J. R. (2017). Computerized adaptive testing with R: recent updates of the package catR. Journal of Statistical Software, 76(Code Snippet 1). 10.18637/jss.v076.c01
McClarty, K. L., Sperling, R. A., & Dodd, B. G. (2006). A variant of the progressive-restricted item exposure control procedure in computerized adaptive testing. Annual Meeting of the American Educational Research Association, San Francisco
set.seed(1)
n.items <- 50
pars <- data.frame(
a = rlnorm(n.items),
b = rnorm(n.items),
c = rbeta(n.items, 5, 17),
d = 1)
# thetas
theta <- rnorm(100)
# simulate responses
resps <- gen.resp(theta, pars[,1:3])
results <- simCAT(resps = resps,
bank = pars[,1:3],
start.theta = 0,
sel.method = 'MFI',
cat.type = 'variable',
threshold = .3,
stop = list(se = .3, max.items = 10))
eval <- cat.evaluation(
results = results,
true.scores = theta,
item.name = paste0('I', 1:nrow(pars)),
rmax = 1)
#### 3 replications
replications <- 3
# simulate responses
set.seed(1)
resps <- list()
for(i in 1:replications)
resps[[i]] <- gen.resp(theta, pars[,1:3])
# CAT
results <- list()
for (rep in 1:replications)
{
print(paste0('replication: ', rep, '/', replications))
results[[rep]] <- simCAT(
resps = resps[[rep]],
bank = pars[,1:3],
start.theta = 0,
sel.method = 'MFI',
cat.type = 'variable',
threshold = .3,
stop = list(se = .5, max.items = 10))
}
eval <- cat.evaluation(
results = results,
true.scores = theta,
item.name = paste0('I', 1:nrow(pars)),
rmax = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.