Nothing
#'@title calculating reference evapotranspiration from Penman-Monteith method
#'@description The FAO Penman-Monteith method is maintained as the sole standard
#' method for the computation of ETo from meteorological data.
#'@param delta slope vapour pressure curve (kPa °C). From cal_slopeOfSaturationVapourPressureCurve()
#'@param Rn net Radiation at the crop surface [MJ m-2 day-1]. From cal_netRadiation()
#'@param G soil heat flux density [MJ m-2 day-1].
#'@param gamma psychrometric constant (kPa °C).
#'@param Tem air temperature at 2 m height [°C].
#'@param u2 wind speed at 2 m height [m s-1].
#'@param es saturation vapour pressure [kPa].
#'@param ea actual vapour pressure [kPa].
#'@return A vector for reference evapotranspiration [mm day-1].
#'@export
#'@note Ten-day or monthly time step :
#'
#' Notwithstanding the non-linearity in the Penman-Monteith equation and some weather
#' parameter methods, mean ten-day or monthly weather data can be used to compute the mean
#' ten-day or monthly values for the reference evapotranspiration. The value of the reference
#' evapotranspiration calculated with mean monthly weather data is indeed very similar to the
#' average of the daily ETo values calculated with daily average weather data for that month.
#'
#' When the soil is warming (spring) or cooling (autumn), the soil heat flux (G) for monthly
#' periods may become significant relative to the mean monthly Rn. In these cases G cannot be
#' ignored and its value should be determined from the mean monthly air temperatures of the
#' previous and next month.
#'
#' Daily time step:
#'
#' Calculation of ETo with the Penman-Monteith equation on 24-hour time scales will generally
#' provide accurate results.
#'
#' As the magnitude of daily soil heat flux (G) beneath the reference grass surface is relatively
#' small, it may be ignored for 24-hour time steps.
#'@references Allen, R. G., Pereira, L. S., Raes, D., & Smith, M.
#' FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture
#' Organization of the United Nations, 1998.
cal_ET0_from_PM<-function(delta,Rn,G,gamma,Tem,u2,es,ea){
# ET0<-((0.408*slopVapourPressureCurve*(netRadiation-soilHeartFluxDensity)+(psychrometricConstant*900*windSpeed*(saturationVapourPressure-actualVapourPressure)))/(airTemperature+273))/(slopVapourPressureCurve+slopVapourPressureCurve*(1+0.34*windSpeed))
ET0<-(0.408*delta*(Rn-G)+gamma*(900/(Tem+273))*u2*(es-ea))/(delta+gamma*(1+0.34*u2))
#(0.408*J2*(Z2-AA2)+K2*900*E2*P2/(C2+273))/(J2+K2*(1+0.34*E2))
#0.408是单位的转换因子
return(ET0)
}
#'@title Calculating reference evapotranspiration from Penman-Monteith for
#' daily
#'@description Based on lat, z, J, Tmax, Tmin, n, RHmax, RHmin, windSpeed parameters,
#' reference evapotranspiration was calculated by Penman-Monteith.
#'@param Latitude latitude (radian), positive for the northern hemisphere and
#' negative for the southern hemisphere.
#'@param Altitude station elevation above sea level [m].
#'@param J is the number of the day in the year between 1 (1 January) and 365 or
#' 366 (31 December).
#'@param Tmax daily maximum air temperature (degrees Celsius).
#'@param Tmin daily minimum air temperature (degrees Celsius).
#'@param Rs Solar radiation [MJ m-2 d-1].
#'@param RHmean daily mean relative humidity \%.
#'@param Wind wind speed at 2 m height [m s-1].
#'@export
#'@return A vector for reference evapotranspiration (mm/day)
#'@references Allen, R. G., Pereira, L. S., Raes, D., & Smith, M.
#' FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture
#' Organization of the United Nations, 1998.
#'@examples
#' library(simET)
#' data("FIalfalfa")
#' names(FIalfalfa)
#' Result_data<- dplyr::mutate(FIalfalfa,
#' ET0=cal_ET0_from_PM_for_daily(Latitude=Latitude,
#' Altitude=Altitude,
#' J=Julian,
#' Tmax=Tmax,
#' Tmin=Tmin,
#' Rs=Rs,
#' RHmean=RHmean,
#' Wind=Wind))
#' names(Result_data)
cal_ET0_from_PM_for_daily<-function(Latitude,Altitude,J,Tmax,Tmin,Rs,RHmean,Wind){
Tmean=(Tmax+Tmin)/2
P=cal_atmosphericPressure(Altitude)
Delta=cal_slopeOfSaturationVapourPressureCurve(Tmean)
gamma=cal_psychrometriCconstant(P)
es=cal_meanSaturationVapourPressure(Tmax ,Tmin)
ea=cal_ActualVapourPressure_from_RHmean(RHmean,Tmax,Tmin)
Deficit=es-ea
# dr=cal_inverseRelativeDistance_Earth_sun(J)
# Solar_D=cal_solarDeclination_in_FAO(J)
Lat=convert_angert_to_radian(Latitude)
# ws=cal_sunsetHourAngle(Lat,Solar_D)
Ra=cal_extraterrestrialRadiation_for_daily(J,Lat)
# Nmax=cal_daylightHours(ws)
# Rs=cal_solarRadiation(as=0.25,bs=0.5,n=Na,N=Nmax,Ra=Ra)
Rso=cal_skySolarRadiation_withas_elevation(z=Altitude,Ra=Ra)
Rns=cal_netSolarRadiation(alpha=0.23,Rs=Rs)
TKmax=convert_degreesCelsius_to_Fahrenheit(Tmax)
TKmin=convert_degreesCelsius_to_Fahrenheit(Tmin)
Rnl=cal_netLongwaveRadiation(TKmax,TKmin,ea,Rs,Rso)
Rn=cal_netRadiation(Rns,Rnl)
G=0
ET0=cal_ET0_from_PM(Delta,Rn,G,gamma,Tmean,Wind,es,ea)
}
#'@title Calculating reference evapotranspiration from Penman-Monteith method
#' for hourly time step
#'@details In areas where substantial changes in wind speed, dewpoint or
#' cloudiness occur during the day, calculation of the ETo equation using
#' hourly time steps is generally better than using 24-hour calculation
#' time steps. Such weather changes can cause 24-hour means to misrepresent
#' evaporative power of the environment during parts of the day and may
#' introduce error into the calculations. However, under most conditions,
#' application of the FAO Penman-Monteith equation with 24-hour data produces
#' accurate results.
#'@param slopVapourPressureCurve saturation slope vapour pressure curve at Thr [kPa °C].
#'@param netRadiation net radiation at the grass surface [MJ m-2 hour-1].
#'@param soilHeatFlux soil heat flux density [MJ m-2 hour-1].
#'@param psychrometricConstant psychrometric constant [kPa °C].
#'@param meanHourlyTem mean hourly air temperature [°C].
#'@param windSpeed average hourly wind speed [m s-1].
#'@param saturationVapourPressure saturation vapour pressure at air temperature Thr [kPa].
#'@param actualVapourPressure average hourly actual vapour pressure [kPa].
#'@return A vector for reference evapotranspiration [mm hour-1].
#'@export
#'@references Allen, R. G., Pereira, L. S., Raes, D., & Smith, M.
#' FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture
#' Organization of the United Nations, 1998.
#'@note With the advent of electronic, automated weather stations, weather
#' data are increasingly reported for hourly or shorter periods. Therefore,
#' in situations where calculations are computerized, the FAO Penman-Monteith
#' equation can be applied on an hourly basis with good results. When applying
#' the FAO Penman-Monteith equation on an hourly or shorter time scale, the
#' equation and some of the procedures for calculating meteorological data
#' should be adjusted for the smaller time step.
#'
#' For the calculation of radiation parameters, see P74-75
cal_ET0_from_PM_for_hourly<-function(slopVapourPressureCurve,netRadiation,soilHeatFlux,psychrometricConstant,meanHourlyTem,windSpeed,saturationVapourPressure,actualVapourPressure){
ET0<-(0.408* slopVapourPressureCurve*(netRadiation-soilHeatFlux)+ psychrometricConstant*(37/(meanHourlyTem+273))*windSpeed*(saturationVapourPressure-actualVapourPressure))/(slopVapourPressureCurve+psychrometricConstant*(1+0.34*windSpeed))
return(ET0)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.