Nothing
Implementation of the SSR-Algorithm. The Sign-Simplicity-Regression model is a nonparametric statistical model which is based on residual signs and simplicity assumptions on the regression function. Goal is to calculate the most parsimonious regression function satisfying the statistical adequacy requirements. Theory and functions are specified in Metzner (2020, ISBN: 979-8-68239-420-3, "Trendbasierte Prognostik") and Metzner (2021, ISBN: 979-8-59347-027-0, "Adäquates Maschinelles Lernen").
Package details |
|
---|---|
Author | Lars Metzner [aut, cre] |
Maintainer | Lars Metzner <lars.metzner@ppi.de> |
License | GPL (>= 2) |
Version | 1.2.1 |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.