axe | R Documentation |
Calculation of the relevant data for the AxE-model from a financial time series: trend, volatiliy, change in quotes and risk level.
axe(quotes)
quotes |
financial time series |
data frame
quotes |
the given time series |
trend5 |
5-day trend |
trend10 |
10-day trend |
trend20 |
20-day trend |
vola5 |
5-day volatility |
vola10 |
10-day volatility |
vola20 |
20-day volatility |
chng5 |
5-day price change |
chng10 |
10-day price change |
chng20 |
20-day price change |
risk5 |
5-day risk level |
risk10 |
10-day risk level |
risk20 |
20-day risk level |
Dr. Lars Metzner
Dr. Lars Metzner (2020) Trendbasierte Prognostik. Independently Published.
set.seed(1234)
s <- 13000 + cumsum(rnorm(100))
df_axe <- axe(s)
op <- par(mfrow=c(3,1))
plot(s, type = "l")
plot(df_axe$trend5, type = "l")
abline(a = 0, b = 0)
plot(df_axe$vola5, type = "l")
par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.