plot.class_cube | R Documentation |
plots a classified raster using ggplot.
## S3 method for class 'class_cube'
plot(
x,
y,
...,
tile = x[["tile"]][[1]],
title = "Classified Image",
legend = NULL,
palette = "Spectral",
scale = 1,
max_cog_size = 1024
)
x |
Object of class "class_cube". |
y |
Ignored. |
... |
Further specifications for plot. |
tile |
Tile to be plotted. |
title |
Title of the plot. |
legend |
Named vector that associates labels to colors. |
palette |
Alternative RColorBrewer palette |
scale |
Relative scale (0.4 to 1.0) that controls |
max_cog_size |
Maximum size of COG overviews (lines or columns) |
A color map, where each pixel has the color associated to a label, as defined by the legend parameter.
The following optional parameters are available to allow for detailed control over the plot output:
first_quantile
: 1st quantile for stretching images (default = 0.05)
last_quantile
: last quantile for stretching images (default = 0.95)
graticules_labels_size
: size of coordinates labels (default = 0.8)
legend_title_size
: relative size of legend title (default = 1.0)
legend_text_size
: relative size of legend text (default = 1.0)
legend_bg_color
: color of legend background (default = "white")
legend_bg_alpha
: legend opacity (default = 0.5)
Gilberto Camara, gilberto.camara@inpe.br
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label cube with the most likely class
label_cube <- sits_label_classification(
probs_cube,
output_dir = tempdir()
)
# plot the resulting classified image
plot(label_cube)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.