Nothing
#' Prostate Cancer Data
#'
#' Data, which come from a study by Stamey et al. (1989), examining the
#' correlation between the level of prostate-specific antigen (PSA) and
#' various clinical measures in men who were about to receive a radical prostatectomy.
#'
#' @format A data frame with 97 rows and 9 variables:
#' \describe{
#' \item{lcavol}{log(cancer volume (cm^3))}
#' \item{lweight}{log(prostate weight (g))}
#' \item{age}{age of the patient}
#' \item{lbph}{log(amount of benign prostatic hyperplasia (cm^2))}
#' \item{svi}{presence of seminal vesicle invasion (1=yes, 0=no)}
#' \item{lcp}{log(capsular penetration (cm))}
#' \item{gleason}{Gleason score}
#' \item{pgg45}{percentage of Gleason scores four of five}
#' \item{lpsa}{log(PSA (ng/mL))}
#' }
#'
#' @source \url{https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data}
#' @references
#' Stamey, T. A., Kabalin, J. N., McNeal, J. E., Johnstone, I. M., Freiha, F., Redwine,
#' E. A., and Yang, N. (1989). Prostate specific antigen in the diagnosis and treatment of
#' adenocarcinoma of the prostate. ii. radical prostatectomy treated patients. The Journal
#' of urology, 141(5):1076-1083.
#'
"pcancer"
#' Sniffer Data
#'
#' Data examining the factors that impact the amount of hydrocarbon vapour released
#' when gasoline is pumped into a tank.
#'
#' @format A data frame with 125 rows and 5 variables:
#' \describe{
#' \item{tanktemp}{initial tank temperature (degrees F)}
#' \item{gastemp}{temperature of the dispensed gasoline (degrees F)}
#' \item{tankpres}{initial vapour pressure in the tank (psi)}
#' \item{gaspres}{vapour pressure of the dispensed gasoline (psi)}
#' \item{y}{hydrocarbons emitted (g)}
#' }
#'
#' @source \url{https://CRAN.R-project.org/package=alr4}
#'
#' @references
#' Bedrick, E.J. (2000). Checking for lack of fit in linear models with parametric
#' variance functions. Technometrics 42 (3), 226–236.
#'
#' Weisberg, S. (2014). Applied Linear Regression, 4th edition. Hoboken NJ: Wiley.
"sniffer"
#' Boston House Price Data (Original)
#'
#' Original data, which come from a study by Harrison Jr and Rubinfeld (1978), examining
#' the association between median house prices in a particular community with
#' various community characteristics. See \code{\link{bostonhouseprice2}}
#' for the corrected version, with additional variables.
#'
#' @format A data frame with 506 rows and 9 variables:
#' \describe{
#' \item{crime}{crimes committed per capita}
#' \item{rooms}{average number of rooms per house}
#' \item{radial}{index of accessibility to radial highways}
#' \item{stratio}{average student-teacher ratio of schools in the community}
#' \item{lowstat}{percentage of the population that are "lower status"}
#' \item{lnox}{log(annual average nitrogen oxide concentration (pphm))}
#' \item{lproptax}{log(property tax per $1000)}
#' \item{ldist}{log(weighted distances to five employment centres in the Boston region)}
#' \item{lprice}{log(median house price ($))}
#' }
#'
#' @source \url{https://CRAN.R-project.org/package=wooldridge}
#'
#' @references
#' Harrison Jr, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the
#' demand for clean air. Journal of environmental economics and management, 5(1):81-102.
#'
#' Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Cengage learning.
#'
"bostonhouseprice"
#' Boston House Price Data (Corrected Version)
#'
#' Corrected data, which come from a study by Harrison Jr and Rubinfeld (1978), examining
#' the association between median house prices in a particular community with
#' various community characteristics. See \code{\link{bostonhouseprice}} for the
#' original version.
#'
#' @format A data frame with 506 rows and 13 variables:
#' \describe{
#' \item{crim}{per capita crime rate by town}
#' \item{zn}{proportion of residential land zoned for lots over 25,000 sq.ft}
#' \item{indus}{proportion of non-retail business acres per town}
#' \item{rm}{average number of rooms per dwelling}
#' \item{age}{proportion of owner-occupied units built prior to 1940}
#' \item{rad}{index of accessibility to radial highways}
#' \item{ptratio}{pupil-teacher ratio by town}
#' \item{lnox}{log(nitric oxides concentration (parts per 10 million))}
#' \item{ldis}{log(weighted distances to five Boston employment centres)}
#' \item{ltax}{log(full-value property-tax rate per USD 10,000)}
#' \item{llstat}{log(percentage of lower status of the population)}
#' \item{chast}{Charles River dummy variable (=1 if tract bounds river; 0 otherwise)}
#' \item{lcmedv}{log(corrected median value of owner-occupied homes in USD 1000's)}
#' }
#'
#' @source \url{https://CRAN.R-project.org/package=mlbench}
#'
#' @references
#' Harrison Jr, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the
#' demand for clean air. Journal of environmental economics and management, 5(1):81-102.
#'
#' Leisch F, Dimitriadou E (2021). mlbench: Machine Learning Benchmark Problems. R package version 2.1-3.
#'
"bostonhouseprice2"
#' Diabetes Data
#'
#' Data relating to a study of disease progression one year after baseline.
#'
#' @format A data frame with 442 rows and 11 variables:
#' \describe{
#' \item{AGE}{age of the patient}
#' \item{SEX}{sex of the patient}
#' \item{BMI}{body mass index of the patient}
#' \item{BP}{blood pressure of the patient}
#' \item{S1}{blood serum measurement 1}
#' \item{S2}{blood serum measurement 2}
#' \item{S3}{blood serum measurement 3}
#' \item{S4}{blood serum measurement 4}
#' \item{S5}{blood serum measurement 5}
#' \item{S6}{blood serum measurement 6}
#' \item{Y}{quantitative measure of disease progression one year after baseline}
#' }
#'
#' @source \url{https://CRAN.R-project.org/package=lars}
#'
#' @references
#' Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004).
#' Least angle regression. The Annals of Statistics.
"diabetes"
#' City Crime Data
#'
#' Data relating to crime rates per one million residents in 50 U.S cities, taken
#' from Thomas (1990).
#'
#' @format A data frame with 50 rows and 7 variables:
#' \describe{
#' \item{violent}{reported violent crime rate per 100,000 residents}
#' \item{funding}{annual police funding per resident ($)}
#' \item{hs}{percentage of people 25 years+ with 4 years of high school}
#' \item{not_hs}{percentage of 16 to 19 year-olds not in high school and not high school graduates}
#' \item{college}{percentage of 18 to 24 year-olds in college}
#' \item{college4}{percentage of people 25 years+ with at least 4 years of college}
#' \item{crime_rate}{total overall reported crime rate per 1 million residents}
#' }
#'
#' @source \url{https://hastie.su.domains/StatLearnSparsity_files/DATA/crime.txt}
#'
#' @references
#' Thomas, G.S., 1990. The Rating Guide to Life in America's Small Cities.
#' Prometheus Books, 59 John Glenn Drive, Amherst, NY 14228-2197.
#'
#' Hastie, T., Tibshirani, R. and Wainwright, M., 2015.
#' Statistical learning with sparsity: the lasso and generalizations. CRC press.
"citycrime"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.