smoothm | R Documentation |
smoothm
is an interface for all the smoothed
M-estimators introduced in Hampel, Hennig and Ronchetti (2011) for
one-dimensional location, the Huber- and Bisquare-M-estimator and the
ML-estimator of the Cauchy distribution, calling all the other
functions documented on this page.
smoothm(y, method="smhuber", k=0.862, sn=sqrt(2.046/length(y)), tol=1e-06, s=mad(y), init="median") sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median") smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y), smmed=FALSE, init="median") mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median") smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)), s=mad(y), init="median") mlcauchy(y, tol = 1e-06, s=mad(y)) smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
y |
numeric vector. Data set. |
method |
one of |
k |
numeric. Tuning constant. This is used for |
sn |
numeric. This is used for |
tol |
numeric. Stopping criterion for algorithms (absolute difference between two successive values). |
s |
numeric. Estimated or assumed scale/standard deviation. |
init |
|
smmed |
logical. If |
The following estimators can be computed (some computational details are given in Hampel et al. 2011):
method="huber"
and function
sehuber
compute the standard Huber estimator (Huber and
Ronchetti 2009). The only differences from huber are
that s
and init
can be specified and that the
default k
is different.
method="smhuber"
and function
smhuber
compute the smoothed Huber estimator (Hampel et
al. 2011).
method="bisquare"
and function
bisquare
compute the bisquare M-estimator (Maronna et
al. 2006). This uses psi.bisquare
.
method="smbisquare"
and function
smbisquare
compute the smoothed bisquare M-estimator (Hampel et
al. 2011). This uses psi.bisquare
method="cauchy"
and function mlcauchy
compute the ML-estimator for the Cauchy
distribution.
method="smcauchy"
and function
smcauchy
compute the
smoothed ML-estimator for the Cauchy distribution (Hampel et
al. 2011).
method="smmed"
and function
smhuber
with median=TRUE
compute the
smoothed median (Hampel et al. 2011).
A list with components
mu |
the location estimator. |
method |
see above. |
k |
see above. |
sn |
see above. |
tol |
see above. |
s |
see above. |
Christian Hennig chrish@stats.ucl.ac.uk http://www.homepages.ucl.ac.uk/~ucakche/
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
pitman
, huber
,
rlm
library(MASS) set.seed(10001) y <- rdoublex(7) median(y) huber(y)$mu smoothm(y)$mu smoothm(y,method="huber")$mu smoothm(y,method="bisquare",k=4.685)$mu smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu smoothm(y,method="cauchy")$mu smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.