Nothing
#' Group sequential data look 1
#'
#' sample dataset of group sequential trial design snSMART, can be used for interim analysis
#'
#' @name groupseqDATA_look1
#' @usage groupseqDATA_look1
#' @format This data frame contains the following columns:
#' \describe{
#' \item{time.1st.trt}{first treatment time}
#' \item{time.1st.resp}{first response time}
#' \item{time.2nd.trt}{second treatment time}
#' \item{time.2nd.resp}{second response time}
#' \item{trt.1st}{treatment arm for first treatment}
#' \item{resp.1st}{response for first treatment}
#' \item{trt.2nd}{treatment arm for second treatment}
#' \item{resp.2nd}{response for second treatment}
#' }
#' @docType data
#' @keywords data
#' @examples
#' mydata <- groupseqDATA_look1
#'
#' result1 <- group_seq(
#' data = mydata, interim = TRUE, drop_threshold_pair = c(0.5, 0.4),
#' prior_dist = c("beta", "beta", "pareto"), pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
#' beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000, n_MCMC_chain = 1
#' )
#'
NULL
#' Group sequential full data
#'
#' sample dataset of group sequential trial design snSMART, can be used for final analysis
#' @name groupseqDATA_full
#' @usage groupseqDATA_full
#' @format This data frame contains the following columns:
#' \describe{
#' \item{time.1st.trt}{first treatment time}
#' \item{time.1st.resp}{first response time}
#' \item{time.2nd.trt}{second treatment time}
#' \item{time.2nd.resp}{second response time}
#' \item{trt.1st}{treatment arm for first treatment}
#' \item{resp.1st}{response for first treatment}
#' \item{trt.2nd}{treatment arm for second treatment}
#' \item{resp.2nd}{response for second treatment}
#' }
#' @docType data
#' @keywords data
#' @examples
#' mydata <- groupseqDATA_full
#' result2 <- group_seq(
#' data = mydata, interim = FALSE, prior_dist = c(
#' "beta", "beta", "pareto"
#' ), pi_prior = c(0.4, 1.6, 0.4, 1.6, 0.4, 1.6),
#' beta_prior = c(1.6, 0.4, 3, 1), MCMC_SAMPLE = 6000, n.adapt = 1000,
#' n_MCMC_chain = 1, ci = 0.95, DTR = TRUE
#' )
NULL
#' Dataset with binary outcomes
#'
#' sample dataset of snSMART (3 active treatment) with binary outcomes
#' @name data_binary
#' @usage data_binary
#' @format This data frame contains the following columns:
#' \describe{
#' \item{treatment_stageI}{treatment received in stage 1 - possible values: 1 (placebo), 2, 3}
#' \item{response_stageI}{whether patients respond to stage 1 treatment - possible values: 0 (nonresponder), 1 (responder)}
#' \item{treatment_stageII}{treatment received in stage 2 - possible values: 2, 3}
#' \item{response_stageII}{whether patients respond to stage 2 treatment - possible values: 0 (nonresponder), 1 (responder)}
#' }
#' @docType data
#' @keywords data
#' @examples
#' mydata <- data_binary
#' LPJSM_result <- LPJSM_binary(data = mydata, six = TRUE, DTR = TRUE)
#'
NULL
#' Dose Level dataset with binary outcomes
#'
#' sample dataset of snSMART (dose level treatment) with binary outcomes
#' @name data_dose
#' @usage data_dose
#' @format This data frame contains the following columns:
#' \describe{
#' \item{treatment_stageI}{treatment received in stage 1 - possible values: 1 (placebo), 2, 3}
#' \item{response_stageI}{whether patients respond to stage 1 treatment - possible values: 0 (nonresponder), 1 (responder)}
#' \item{treatment_stageII}{treatment received in stage 2 - possible values: 2, 3}
#' \item{response_stageII}{whether patients respond to stage 2 treatment - possible values: 0 (nonresponder), 1 (responder)}
#' }
#' @docType data
#' @keywords data
#' @examples
#' mydata <- data_dose
#' BJSM_dose_result <- BJSM_binary(
#' data = data_dose, prior_dist = c("beta", "gamma"),
#' pi_prior = c(3, 17), normal.par = c(0.2, 100), beta_prior = c(2, 2),
#' n_MCMC_chain = 2, n.adapt = 100, MCMC_SAMPLE = 2000, ci = 0.95
#' )
#'
NULL
#' Dataset with continuous outcomes
#'
#' sample dataset of snSMART (mapping function) with continuous outcomes
#' @name trialDataMF
#' @usage trialDataMF
#' @format This data frame contains the following columns:
#' \describe{
#' \item{id}{participant ID}
#' \item{trt1}{treatment received in stage 1 - possible values: 1 (placebo), 2, 3}
#' \item{stage1outcome}{a number between 0-100 that represents the stage 1 treatment effect}
#' \item{stay}{indicates whether the participant stayed on the same treatment arm in stage 2 - possible values: 0 (didn't stay), 1 (stayed)}
#' \item{trt2}{treatment received in stage 2 - possible values: 2, 3}
#' \item{stage2outcome}{a number between 0-100 that represents the stage 2 treatment effect}
#' }
#' @docType data
#' @keywords data
#' @examples
#' trialData <- trialDataMF
#'
#' BJSM_result <- BJSM_c(
#' data = trialData, xi_prior.mean = c(50, 50, 50),
#' xi_prior.sd = c(50, 50, 50), phi3_prior.sd = 20, n_MCMC_chain = 1,
#' n.adapt = 1000, MCMC_SAMPLE = 5000, ci = 0.95, n.digits = 5
#' )
#'
#' summary(BJSM_result)
#' print(BJSM_result)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.