knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 4 ) ## modern_r <- getRversion() >= "4.1.0" pth <- withr::local_tempdir(pattern = "snvecR") withr::local_options(list(snvecR.cachedir = pth))
library(tibble) # nice dataframes library(ggplot2) # nice plots library(snvecR) # this package
The function snvec()
uses some of the parameters of a full astronomical
solution (AS) such as ZB18a from Zeebe and Lourens (2019) in combination with
values for tidal dissipation (Td) and dynamical ellipticity
(Ed) to calculate precession and obliquity (or tilt).
In this vignette we show how we can run snvec()
and contrast the result to pre-computed solutions, which were calculated using the c-routine.
snvec
For the full 100 Myr available:
dat <- snvec(-1e5, 1, 1, astronomical_solution = "full-ZB18a")
pt <- get_solution("PT-ZB18a(1,1)")
We find that despite the different ODE solvers and timesteps, the C- and R-implementations are almost identical up to -60 Myr.
pl <- ggplot(dat, aes(x = time / 1000, y = cp)) + labs(x = "Time (Myr)", y = "Climatic precession") + geom_line(aes(colour = "snvecR ZB18a(1,1)")) + geom_line(aes(colour = "snvec ZB18a(1,1)"), data = pt) + # add eccentricity geom_line(aes(y = ee, colour = "ZB18a eccentricity"), linetype = "solid", data = get_solution("full-ZB18a")) + labs(colour = "") pl + xlim(-60, -59)
plo <- ggplot(dat, aes(x = time / 1000, y = epl)) + labs(x = "Time (Myr)", y = "Obliquity (rad)") + geom_line(aes(colour = "snvecR ZB18a(1,1)")) + geom_line(aes(colour = "snvec ZB18a(1,1)"), data = pt) + labs(colour = "") plo + xlim(-60, -59)
But note the subtle differences at around -100 Myr. This is not significant, however, because this difference occurs far beyond the horizon of predictability in the orbital solutions (the eccentricity curves).
pl + xlim(-100, -99)
plo + xlim(-100, -99)
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.
Zeebe, R. E., & Lourens, L. J. (2022). A deep-time dating tool for paleo-applications utilizing obliquity and precession cycles: The role of dynamical ellipticity and tidal dissipation. Paleoceanography and Paleoclimatology, e2021PA004349. doi:10.1029/2021PA004349.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.