deBias | R Documentation |
$d
component of a "softImpute"
object through
regression.softImpute
uses shrinkage when completing a matrix with missing
values. This function debiases the singular values using ordinary least
squares.
deBias(x, svdObject)
x |
matrix with missing entries, or a matrix of class
|
svdObject |
an SVD object, the output of |
Treating the "d"
values as parameters, this function recomputes them
by linear regression.
An svd object is returned, with components "u", "d", and "v".
Trevor Hastie
Maintainer: Trevor Hastie
hastie@stanford.edu
set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
fit1=softImpute(xna,rank=50,lambda=30)
fit1d=deBias(xna,fit1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.