deBias: Recompute the '$d' component of a '"softImpute"' object...

View source: R/deBias.R

deBiasR Documentation

Recompute the $d component of a "softImpute" object through regression.

Description

softImpute uses shrinkage when completing a matrix with missing values. This function debiases the singular values using ordinary least squares.

Usage

deBias(x, svdObject)

Arguments

x

matrix with missing entries, or a matrix of class "Incomplete"

svdObject

an SVD object, the output of softImpute

Details

Treating the "d" values as parameters, this function recomputes them by linear regression.

Value

An svd object is returned, with components "u", "d", and "v".

Author(s)

Trevor Hastie
Maintainer: Trevor Hastie hastie@stanford.edu

Examples


set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
fit1=softImpute(xna,rank=50,lambda=30)
fit1d=deBias(xna,fit1)

softImpute documentation built on June 10, 2025, 9:10 a.m.