Nothing
#' Calculates the .632 Error Rate for a specified classifier given a data set.
#'
#' For a given data matrix and its corresponding vector of labels, we calculate
#' the .632 error rate from Efron (1983) for a given classifier.
#'
#' To calculate the .632 error rate, we compute the leave-one-out bootstrap
#' (LOO-Boot) error rate and the apparent error rate (AER). Then, we compute a
#' convex combination of these two error rates estimators.
#'
#' To calculate the AER, we use the \code{\link{errorest_apparent}}
#' function. Similarly, we use the \code{\link{errorest_loo_boot}} function to
#' calculate the (LOO-Boot error rate. In some cases (e.g., simulation study)
#' one, if not both, of these error rate estimators might already be computed.
#' Hence, we allow the user to provide these values if they are already
#' computed; by default, the arguments are \code{NULL} to indicate that they are
#' ignored.
#'
#' For the given classifier, two functions must be provided 1. to train the
#' classifier and 2. to classify unlabeled observations. The training function
#' is provided as \code{train} and the classification function as
#' \code{classify}.
#'
#' We expect that the first two arguments of the \code{train} function are
#' \code{x} and \code{y}, corresponding to the data matrix and the vector of
#' their labels, respectively. Additional arguments can be passed to the
#' \code{train} function.
#'
#' We stay with the usual R convention for the \code{classify} function. We
#' expect that this function takes two arguments: 1. an \code{object} argument
#' which contains the trained classifier returned from the function specified in
#' \code{train}; and 2. a \code{newdata} argument which contains a matrix of
#' observations to be classified -- the matrix should have rows corresponding to
#' the individual observations and columns corresponding to the features
#' (covariates). For an example, see \code{\link[MASS]{lda}}.
#'
#' @references Efron, Bradley (1983), "Estimating the Error Rate of a
#' Prediction Rule: Improvement on Cross-Validation," Journal of American
#' Statistical Association, 78, 382, 316-331.
#' @export
#' @param x a matrix of n observations (rows) and p features (columns)
#' @param y a vector of n class labels
#' @param train a function that builds the classifier. (See details.)
#' @param classify a function that classifies observations from the constructed
#' classifier from \code{train}. (See details.)
#' @param num_bootstraps the number of bootstrap replications
#' @param apparent the apparent error rate for the given classifier. If
#' \code{NULL}, this argument is ignored. See Details.
#' @param loo_boot the leave-one-out bootstrap error rate for the given
#' classifier. If \code{NULL}, this argument is ignored. See Details.
#' @param ... additional arguments passed to the function specified in
#' \code{train}.
#' @return the 632 error rate estimate
#' @examples
#' require('MASS')
#' iris_x <- data.matrix(iris[, -5])
#' iris_y <- iris[, 5]
#'
#' # Because the \code{classify} function returns multiples objects in a list,
#' # we provide a wrapper function that returns only the class labels.
#' lda_wrapper <- function(object, newdata) { predict(object, newdata)$class }
#'
#' # We compute the apparent and LOO-Boot error rates up front to demonstrate
#' # that they can be computed before the \code{errorest_632} function is called.
#'
#' set.seed(42)
#' apparent <- errorest_apparent(x = iris_x, y = iris_y, train = MASS:::lda,
#' classify = lda_wrapper)
#' set.seed(42)
#' loo_boot <- errorest_loo_boot(x = iris_x, y = iris_y, train = MASS:::lda,
#' classify = lda_wrapper)
#'
#' # Each of the following 3 calls should result in the same error rate.
#' # 1. The apparent error rate is provided, while the LOO-Boot must be computed.
#' set.seed(42)
#' errorest_632(x = iris_x, y = iris_y, train = MASS:::lda, classify = lda_wrapper,
#' apparent = apparent)
#' # 2. The LOO-Boot error rate is provided, while the apparent must be computed.
#' set.seed(42)
#' errorest_632(x = iris_x, y = iris_y, train = MASS:::lda, classify = lda_wrapper,
#' loo_boot = loo_boot)
#' # 3. Both error rates are provided, so the calculation is quick.
#' errorest_632(x = iris_x, y = iris_y, train = MASS:::lda, classify = lda_wrapper,
#' apparent = apparent, loo_boot = loo_boot)
#'
#' # In each case the output is: 0.02194132
errorest_632 <- function(x, y, train, classify, num_bootstraps = 50,
apparent = NULL, loo_boot = NULL, ...) {
x <- as.matrix(x)
y <- as.factor(y)
check_out <- check_arguments(x = x, y = y, train = train, classify = classify)
if (is.null(apparent)) {
apparent <- errorest_apparent(x = x, y = y, train = train, classify = classify,
...)
}
if (is.null(loo_boot)) {
loo_boot <- errorest_loo_boot(x = x, y = y, train = train, classify = classify,
num_bootstraps = num_bootstraps, ...)
}
0.368 * apparent + 0.632 * loo_boot
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.