BPS_PseudoBMA | R Documentation |
Combine subset models wiht Pseudo-BMA
BPS_PseudoBMA(fit_list)
fit_list |
list K fitted model outputs composed by two elements each: first named |
matrix posterior predictive density evaluations (each columns represent a different model)
## Generate subsets of data
n <- 100
p <- 3
X <- matrix(rnorm(n*p), nrow = n, ncol = p)
Y <- matrix(rnorm(n), nrow = n, ncol = 1)
crd <- matrix(runif(n*2), nrow = n, ncol = 2)
data_part <- subset_data(data = list(Y = Y, X = X, crd = crd), K = 10)
## Select competitive set of values for hyperparameters
delta_seq <- c(0.1, 0.2, 0.3)
phi_seq <- c(3, 4, 5)
## Perform Bayesian Predictive Stacking within subsets
fit_list <- vector(length = 10, mode = "list")
for (i in 1:10) {
Yi <- data_part$Y_list[[i]]
Xi <- data_part$X_list[[i]]
crd_i <- data_part$crd_list[[i]]
p <- ncol(Xi)
bps <- spBPS::BPS_weights(data = list(Y = Yi, X = Xi),
priors = list(mu_b = matrix(rep(0, p)),
V_b = diag(10, p),
a = 2,
b = 2), coords = crd_i,
hyperpar = list(delta = delta_seq,
phi = phi_seq),
K = 5)
w_hat <- bps$W
epd <- bps$epd
fit_list[[i]] <- list(epd, w_hat) }
## Combination weights between partitions using Pseudo Bayesian Model Averaging
comb_bps <- BPS_PseudoBMA(fit_list = fit_list)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.