predict.lfMsPGOcc | R Documentation |
The function predict
collects posterior predictive samples for a set of new locations given an object of class 'lfMsPGOcc'. Prediction is possible for both the latent occupancy state as well as detection.
## S3 method for class 'lfMsPGOcc'
predict(object, X.0, coords.0,
ignore.RE = FALSE, type = 'occupancy', include.w = TRUE, ...)
object |
an object of class lfMsPGOcc |
X.0 |
the design matrix of covariates at the prediction locations. This should include a column of 1s for the intercept if an intercept is included in the model. If random effects are included in the occupancy (or detection if |
coords.0 |
the spatial coordinates corresponding to |
ignore.RE |
a logical value indicating whether to include unstructured random effects for prediction. If TRUE, random effects will be ignored and prediction will only use the fixed effects. If FALSE, random effects will be included in the prediction for both observed and unobserved levels of the random effect. |
... |
currently no additional arguments |
type |
a quoted keyword indicating what type of prediction to produce. Valid keywords are 'occupancy' to predict latent occupancy probability and latent occupancy values (this is the default), or 'detection' to predict detection probability given new values of detection covariates. |
include.w |
a logical value used to indicate whether the latent factors should be included in the predictions. By default, this is set to |
A list object of class predict.lfMsPGOcc
. When type = 'occupancy'
, the list consists of:
psi.0.samples |
a three-dimensional array of posterior predictive samples for the latent occurrence probability values. |
z.0.samples |
a three-dimensional array of posterior predictive samples for the latent occurrence values. |
w.0.samples |
a three-dimensional array of posterior predictive samples for the latent factors. |
When type = 'detection'
, the list consists of:
p.0.samples |
a three-dimensional array of posterior predictive samples for the detection probability values. |
The return object will include additional objects used for standard extractor functions.
When ignore.RE = FALSE
, both sampled levels and non-sampled levels of random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
set.seed(400)
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep<- sample(2:4, size = J, replace = TRUE)
N <- 6
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, 0.5)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -0.1)
tau.sq.alpha <- c(0.2, 0.3, 1)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
sp = FALSE, factor.model = TRUE, n.factors = n.factors)
n.samples <- 5000
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
y <- dat$y[, -pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Spatial coordinates
coords <- dat$coords[-pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
# Prediction values
X.0 <- dat$X[pred.indx, ]
psi.0 <- dat$psi[, pred.indx]
coords.0 <- dat$coords[pred.indx, ]
# Package all data into a list
occ.covs <- X[, 2, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2],
det.cov.2 = X.p[, , 3])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)
# Occupancy initial values
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
alpha.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
tau.sq.alpha.ig = list(a = 0.1, b = 0.1))
# Initial values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(alpha.comm = 0,
beta.comm = 0,
beta = 0,
alpha = 0,
tau.sq.beta = 1,
tau.sq.alpha = 1,
lambda = lambda.inits,
z = apply(y, c(1, 2), max, na.rm = TRUE))
# Note that this is just a test case and more iterations/chains may need to
# be run to ensure convergence.
out <- lfMsPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1 + det.cov.2,
data = data.list,
inits = inits.list,
n.samples = n.samples,
n.factors = 3,
priors = prior.list,
n.omp.threads = 1,
verbose = TRUE,
n.report = 1000,
n.burn = 4000)
summary(out, level = 'community')
# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.