sparsevb-package: sparsevb: Spike-and-Slab Variational Bayes for Linear and...

Description Details Author(s) References See Also


Implements variational Bayesian algorithms to perform scalable variable selection for sparse, high-dimensional linear and logistic regression models. Features include a novel prioritized updating scheme, which uses a preliminary estimator of the variational means during initialization to generate an updating order prioritizing large, more relevant, coefficients. Sparsity is induced via spike-and-slab priors with either Laplace or Gaussian slabs. By default, the heavier-tailed Laplace density is used. Formal derivations of the algorithms and asymptotic consistency results may be found in Kolyan Ray and Botond Szabo (2020) <doi:10.1080/01621459.2020.1847121> and Kolyan Ray, Botond Szabo, and Gabriel Clara (2020) <arXiv:2010.11665>.


For details as they pertain to using the package, consult the function help page. Detailed descriptions and derivations of the variational algorithms with Laplace slabs may be found in the references.


Maintainer: Gabriel Clara



See Also

Useful links:

sparsevb documentation built on Jan. 16, 2021, 5:16 p.m.