GEESAR: Generalized Estimating Equations with Spatial Autoregressive...

GEESARR Documentation

Generalized Estimating Equations with Spatial Autoregressive Components

Description

'GEESAR' estimates generalized estimating equations (GEE) incorporating spatial autoregressive (SAR) components. It extends GEE models to account for spatial dependence in the response variable.

Usage

GEESAR(
  formula,
  family = gaussian(),
  weights = NULL,
  data,
  W,
  start = NULL,
  toler = 1e-04,
  maxit = 200,
  trace = FALSE
)

Arguments

formula

A formula specifying the model structure (response ~ predictors).

family

A description of the error distribution and link function. Default is 'gaussian()'.

weights

Optional vector of prior weights. Must be positive.

data

A data frame containing the variables in the model.

W

A spatial weights matrix defining the spatial dependence structure.

start

Optional starting values for parameter estimation.

toler

Convergence tolerance for iterative optimization. Default is '1e-05'.

maxit

Maximum number of iterations for model fitting. Default is '50'.

trace

Logical; if 'TRUE', prints iteration details. Default is 'FALSE'.

Details

The function estimates a spatially autoregressive GEE model by iteratively updating the spatial dependence parameter ('rho') and regression coefficients ('beta'). The estimation follows a quasi-likelihood approach using iterative weighted least squares (IWLS).

The function supports common GLM families ('gaussian', 'binomial', 'poisson', 'Gamma', 'inverse.gaussian') and their quasi-likelihood equivalents.

Value

A list of class '"GEESAR"' containing:

coefficients

Estimated regression coefficients.

rho

Estimated spatial autoregressive parameter.

fitted.values

Predicted values from the model.

linear.predictors

Linear predictor values ('X * beta').

prior.weights

Weights used in estimation.

y

Observed response values.

formula

Model formula.

call

Function call used to fit the model.

data

Data used in the model.

converged

Logical indicating whether the algorithm converged.

logLik

Quasi-log-likelihood of the fitted model.

deviance

Residual deviance.

df.residual

Residual degrees of freedom.

phi

Dispersion parameter estimate.

CIC

Corrected Information Criterion.

RJC

Robust Jackknife Correction.

Source

https://doi.org/10.48550/arXiv.2412.00945

References

Cruz, N. A., Toloza-Delgado, J. D., & Melo, O. O. (2024). Generalized spatial autoregressive model. arXiv preprint arXiv:2412.00945.

See Also

glm, gee, spdep

Examples


library(spdep)
library(sp)
data(meuse)
sp::coordinates(meuse) <- ~x+y
W <- spdep::nb2mat(knn2nb(knearneigh(meuse, k=5)), style="W")
fit <- GEESAR(cadmium ~ dist + elev, family=poisson(), data=meuse, W=W)
summary_SAR(fit)


spatemR documentation built on June 8, 2025, 1:16 p.m.