GEESAR | R Documentation |
'GEESAR' estimates generalized estimating equations (GEE) incorporating spatial autoregressive (SAR) components. It extends GEE models to account for spatial dependence in the response variable.
GEESAR(
formula,
family = gaussian(),
weights = NULL,
data,
W,
start = NULL,
toler = 1e-04,
maxit = 200,
trace = FALSE
)
formula |
A formula specifying the model structure (response ~ predictors). |
family |
A description of the error distribution and link function. Default is 'gaussian()'. |
weights |
Optional vector of prior weights. Must be positive. |
data |
A data frame containing the variables in the model. |
W |
A spatial weights matrix defining the spatial dependence structure. |
start |
Optional starting values for parameter estimation. |
toler |
Convergence tolerance for iterative optimization. Default is '1e-05'. |
maxit |
Maximum number of iterations for model fitting. Default is '50'. |
trace |
Logical; if 'TRUE', prints iteration details. Default is 'FALSE'. |
The function estimates a spatially autoregressive GEE model by iteratively updating the spatial dependence parameter ('rho') and regression coefficients ('beta'). The estimation follows a quasi-likelihood approach using iterative weighted least squares (IWLS).
The function supports common GLM families ('gaussian', 'binomial', 'poisson', 'Gamma', 'inverse.gaussian') and their quasi-likelihood equivalents.
A list of class '"GEESAR"' containing:
coefficients |
Estimated regression coefficients. |
rho |
Estimated spatial autoregressive parameter. |
fitted.values |
Predicted values from the model. |
linear.predictors |
Linear predictor values ('X * beta'). |
prior.weights |
Weights used in estimation. |
y |
Observed response values. |
formula |
Model formula. |
call |
Function call used to fit the model. |
data |
Data used in the model. |
converged |
Logical indicating whether the algorithm converged. |
logLik |
Quasi-log-likelihood of the fitted model. |
deviance |
Residual deviance. |
df.residual |
Residual degrees of freedom. |
phi |
Dispersion parameter estimate. |
CIC |
Corrected Information Criterion. |
RJC |
Robust Jackknife Correction. |
https://doi.org/10.48550/arXiv.2412.00945
Cruz, N. A., Toloza-Delgado, J. D., & Melo, O. O. (2024). Generalized spatial autoregressive model. arXiv preprint arXiv:2412.00945.
glm
, gee
, spdep
library(spdep)
library(sp)
data(meuse)
sp::coordinates(meuse) <- ~x+y
W <- spdep::nb2mat(knn2nb(knearneigh(meuse, k=5)), style="W")
fit <- GEESAR(cadmium ~ dist + elev, family=poisson(), data=meuse, W=W)
summary_SAR(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.