Automatic generation and selection of spatial predictors for Random Forest models fitted to spatially structured data. Spatial predictors are constructed from a distance matrix among training samples using Moran's Eigenvector Maps (MEMs; Dray, Legendre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>) or the RFsp approach (Hengl et al. <DOI:10.7717/peerj.5518>). These predictors are used alongside user-supplied explanatory variables in Random Forest models. The package provides functions for model fitting, multicollinearity reduction, interaction identification, hyperparameter tuning, evaluation via spatial cross-validation, and result visualization using partial dependence and interaction plots. Model fitting relies on the 'ranger' package (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).
Package details |
|
|---|---|
| Author | Blas M. Benito [aut, cre, cph] (ORCID: <https://orcid.org/0000-0001-5105-7232>) |
| Maintainer | Blas M. Benito <blasbenito@gmail.com> |
| License | MIT + file LICENSE |
| Version | 1.1.5 |
| URL | https://blasbenito.github.io/spatialRF/ |
| Package repository | View on CRAN |
| Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.