| plants_rf_spatial | R Documentation |
Fitted spatial random forest model using plants_df with spatial predictors from Moran's Eigenvector Maps. Provided for testing and examples without requiring model fitting. Fitted with reduced complexity for faster computation and smaller object size.
data(plants_rf_spatial)
An object of class rf fitted with the following parameters:
data: plants_df
dependent.variable.name: plants_response ("richness_species_vascular")
predictor.variable.names: plants_predictors (17 variables)
distance.matrix: plants_distance
xy: plants_xy
distance.thresholds: c(100, 1000, 2000, 4000)
method: "mem.effect.recursive"
num.trees: 50
min.node.size: 30
n.cores: 14
This spatial model includes spatial predictors (Moran's Eigenvector Maps) selected using the recursive method to minimize residual spatial autocorrelation. Uses reduced complexity (50 trees, min.node.size = 30) to keep object size small for package distribution. For actual analyses, use higher values (e.g., num.trees = 500, min.node.size = 5).
rf_spatial(), rf(), plants_rf, plants_df, plants_response, plants_predictors
Other data:
plants_df,
plants_distance,
plants_predictors,
plants_response,
plants_rf,
plants_xy
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.