spatialnbda: Performs spatial NBDA in a Bayesian context
Version 1.0

Network based diffusion analysis (NBDA) allows inference on the asocial and social transmission of information. This may involve the social transmission of a particular behaviour such as tool use, for example. For the NBDA, the key parameters estimated are the social effect and baseline rate parameters. The baseline rate parameter gives the rate at which the behaviour is first performed (or acquired) asocially amongst the individuals in a given population. The social effect parameter quantifies the effect of the social associations amongst the individuals on the rate at which each individual first performs or displays the behaviour. Spatial NBDA involves incorporating spatial information in the analysis. This is done by incorporating social networks derived from spatial point patterns (of the home bases of the individuals under study). In addition, a spatial covariate such as vegetation cover, or slope may be included in the modelling process.

AuthorGlenna Nightingale
Date of publication2014-09-19 00:49:05
MaintainerGlenna Nightingale <glenna.evans@gmail.com>
LicenseGPL
Version1.0
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("spatialnbda")

Getting started

Package overview

Popular man pages

FormatData: Formats the data for NBDA
Ids: This dataset contains the unique id for each individual in...
papernests: papernests
papertimes: papertimes
Times: This dataset contains the diffusion times using in the This...
Xx: x coordinates for data example for NBDA with random effects...
Yy: y coordinates for data example for NBDA with random effects...
See all...

All man pages Function index File listing

Man pages

FormatData: Formats the data for NBDA
idarray: Individual id's for RJMCMC Example 1.
Ids: This dataset contains the unique id for each individual in...
mcmc: Performs spatial NBDA in a Bayesian context
mcmcre: Performs NBDA with individual level random effects
nullmcmc: The spatial NBDA null model is considered for this analysis....
papernests: papernests
papertimes: papertimes
rjmcmc: Model discriminiation in a Bayesian context for spatial NBDA.
smcmc: Performs spatial NBDA in a Bayesian context with an...
socialx: x coordinates for RJMCMC Example 1.
socialy: y coordinates for RJMCMC Example 1
spatialnbda-package: Performs spatial NBDA in a Bayesian context.
timearray: Diffusions times for RJMCMC Example 1
Times: This dataset contains the diffusion times using in the This...
x: x
Xx: x coordinates for data example for NBDA with random effects...
y: y
Yy: y coordinates for data example for NBDA with random effects...

Functions

FormatData Man page Source code
Ids Man page
Times Man page
Xx Man page
Yy Man page
idarray Man page
mcmc Man page Source code
mcmcre Man page Source code
nullmcmc Man page Source code
papernests Man page
papertimes Man page
rjmcmc Man page Source code
smcmc Man page Source code
socialx Man page
socialy Man page
spatialnbda Man page Man page
timearray Man page
x Man page
y Man page

Files

NAMESPACE
data
data/x.csv
data/Times.csv
data/papertimes.csv
data/socialx.csv
data/Xx.csv
data/Ids.csv
data/papernests.csv
data/timearray.csv
data/Yy.csv
data/socialy.csv
data/y.csv
data/idarray.csv
R
R/nbda.R
R/nullmcmc.R
R/rjmcmc.R
R/snbda.R
R/spatialnbda.R
R/nbdaaptitudes.R
MD5
DESCRIPTION
man
man/figures
man/figures/smooth.jpeg
man/figures/pointpattern.jpeg
man/figures/patacake.jpeg
man/figures/step.jpeg
man/figures/Rplot.jpeg
man/figures/multiplediffusions.jpeg
man/figures/spatialcovariate.jpeg
man/x.Rd
man/timearray.Rd
man/mcmcre.Rd
man/y.Rd
man/papernests.Rd
man/Ids.Rd
man/smcmc.Rd
man/spatialnbda-package.Rd
man/socialy.Rd
man/nullmcmc.Rd
man/Xx.Rd
man/idarray.Rd
man/Yy.Rd
man/papertimes.Rd
man/Times.Rd
man/FormatData.Rd
man/rjmcmc.Rd
man/mcmc.Rd
man/socialx.Rd
spatialnbda documentation built on May 19, 2017, 9:38 p.m.

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs in the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.