methods.zclustermodel | R Documentation |
Methods for the experimental class of cluster models.
## S3 method for class 'zclustermodel' pcfmodel(model, ...) ## S3 method for class 'zclustermodel' Kmodel(model, ...) ## S3 method for class 'zclustermodel' intensity(X, ...) ## S3 method for class 'zclustermodel' predict(object, ..., locations, type = "intensity", ngrid = NULL) ## S3 method for class 'zclustermodel' print(x, ...) ## S3 method for class 'zclustermodel' clusterradius(model,...,thresh=NULL, precision=FALSE) ## S3 method for class 'zclustermodel' reach(x, ..., epsilon)
model,object,x,X |
Object of class |
... |
Arguments passed to other methods. |
locations |
Locations where prediction should be performed. A window or a point pattern. |
type |
Currently must equal |
ngrid |
Pixel grid dimensions for prediction, if |
thresh,epsilon |
Tolerance thresholds |
precision |
Logical value stipulating whether the precision should also be returned. |
Experimental.
Same as for other methods.
zclustermodel
m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1) m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7) m m2 g <- pcfmodel(m) g(0.2) g2 <- pcfmodel(m2) g2(1) Z <- predict(m, locations=square(2)) Z2 <- predict(m2, locations=square(1)) varcount(m, square(1)) varcount(m2, square(1))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.