thomas.estpcf | R Documentation |
Fits the Thomas point process to a point pattern dataset by the Method of Minimum Contrast using the pair correlation function.
thomas.estpcf(X, startpar=c(kappa=1,scale=1), lambda=NULL, q = 1/4, p = 2, rmin = NULL, rmax = NULL, ..., pcfargs=list())
X |
Data to which the Thomas model will be fitted. Either a point pattern or a summary statistic. See Details. |
startpar |
Vector of starting values for the parameters of the Thomas process. |
lambda |
Optional. An estimate of the intensity of the point process. |
q,p |
Optional. Exponents for the contrast criterion. |
rmin, rmax |
Optional. The interval of r values for the contrast criterion. |
... |
Optional arguments passed to |
pcfargs |
Optional list containing arguments passed to |
This algorithm fits the Thomas point process model to a point pattern dataset
by the Method of Minimum Contrast, using the pair correlation function
pcf
.
The argument X
can be either
An object of class "ppp"
representing a point pattern dataset.
The pair correlation function of the point pattern will be computed
using pcf
, and the method of minimum contrast
will be applied to this.
An object of class "fv"
containing
the values of a summary statistic, computed for a point pattern
dataset. The summary statistic should be the pair correlation function,
and this object should have been obtained by a call to
pcf
or one of its relatives.
The algorithm fits the Thomas point process to X
,
by finding the parameters of the Thomas model
which give the closest match between the
theoretical pair correlation function of the Thomas process
and the observed pair correlation function.
For a more detailed explanation of the Method of Minimum Contrast,
see mincontrast
.
The Thomas point process is described in
\Moller and Waagepetersen (2003, pp. 61–62). It is a cluster
process formed by taking a pattern of parent points, generated
according to a Poisson process with intensity kappa, and
around each parent point, generating a random number of offspring
points, such that the number of offspring of each parent is a Poisson
random variable with mean mu, and the locations of the
offspring points of one parent are independent and isotropically
Normally distributed around the parent point with standard deviation
sigma which is equal to the parameter scale
. The
named vector of stating values can use either sigma2
(sigma^2) or scale
as the name of the second
component, but the latter is recommended for consistency with other
cluster models.
The theoretical pair correlation function of the Thomas process is
g(r) = 1 + exp(-r^2/(4 * sigma^2)))/(4 * pi * kappa * sigma^2).
The theoretical intensity of the Thomas process is lambda=kappa* mu.
In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters kappa and sigma^2. Then the remaining parameter mu is inferred from the estimated intensity lambda.
If the argument lambda
is provided, then this is used
as the value of lambda. Otherwise, if X
is a
point pattern, then lambda
will be estimated from X
.
If X
is a summary statistic and lambda
is missing,
then the intensity lambda cannot be estimated, and
the parameter mu will be returned as NA
.
The remaining arguments rmin,rmax,q,p
control the
method of minimum contrast; see mincontrast
.
The Thomas process can be simulated, using rThomas
.
Homogeneous or inhomogeneous Thomas process models can also
be fitted using the function kppm
.
The optimisation algorithm can be controlled through the
additional arguments "..."
which are passed to the
optimisation function optim
. For example,
to constrain the parameter values to a certain range,
use the argument method="L-BFGS-B"
to select an optimisation
algorithm that respects box constraints, and use the arguments
lower
and upper
to specify (vectors of) minimum and
maximum values for each parameter.
An object of class "minconfit"
. There are methods for printing
and plotting this object. It contains the following main components:
par |
Vector of fitted parameter values. |
fit |
Function value table (object of class |
Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by means of distance methods. Biometrics 32 659–667.
\Moller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point Processes. Chapman and Hall/CRC, Boca Raton.
Thomas, M. (1949) A generalisation of Poisson's binomial limit for use in ecology. Biometrika 36, 18–25.
Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63, 252–258.
thomas.estK
mincontrast
,
pcf
,
rThomas
to simulate the fitted model.
data(redwood) u <- thomas.estpcf(redwood, c(kappa=10, scale=0.1)) u plot(u, legendpos="topright") u2 <- thomas.estpcf(redwood, c(kappa=10, scale=0.1), pcfargs=list(stoyan=0.12))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.