View source: R/xewma.q.prerun.R
xewma.q.prerun | R Documentation |
Computation of quantiles of the Run Length (RL) for EWMA control charts monitoring normal mean if the in-control mean, standard deviation, or both are estimated by a pre run.
xewma.q.prerun(l, c, mu, p, zr=0, hs=0, sided="two", limits="fix", q=1, size=100,
df=NULL, estimated="mu", qm.mu=30, qm.sigma=30, truncate=1e-10, bound=1e-10)
xewma.q.crit.prerun(l, L0, mu, p, zr=0, hs=0, sided="two", limits="fix", size=100,
df=NULL, estimated="mu", qm.mu=30, qm.sigma=30, truncate=1e-10, bound=1e-10,
c.error=1e-10, p.error=1e-9, OUTPUT=FALSE)
l |
smoothing parameter lambda of the EWMA control chart. |
c |
critical value (similar to alarm limit) of the EWMA control chart. |
mu |
true mean shift. |
p |
quantile level. |
zr |
reflection border for the one-sided chart. |
hs |
so-called headstart (give fast initial response). |
sided |
distinguish between one- and two-sided EWMA control chart
by choosing |
limits |
distinguish between different control limits behavior. |
q |
change point position. For |
size |
pre run sample size. |
df |
Degrees of freedom of the pre run variance estimator. Typically it is simply |
estimated |
name the parameter to be estimated within the |
qm.mu |
number of quadrature nodes for convoluting the mean uncertainty. |
qm.sigma |
number of quadrature nodes for convoluting the standard deviation uncertainty. |
truncate |
size of truncated tail. |
bound |
control when the geometric tail kicks in; the larger the quicker and less accurate; |
L0 |
in-control quantile value. |
c.error |
error bound for two succeeding values of the critical value during applying the secant rule. |
p.error |
error bound for the quantile level |
OUTPUT |
activate or deactivate additional output. |
Essentially, the ARL function xewma.q
is convoluted with the
distribution of the sample mean, standard deviation or both.
For details see Jones/Champ/Rigdon (2001) and Knoth (2014?).
Returns a single value which resembles the RL quantile of order q
.
Sven Knoth
L. A. Jones, C. W. Champ, S. E. Rigdon (2001), The performance of exponentially weighted moving average charts with estimated parameters, Technometrics 43, 156-167.
S. Knoth (2003), EWMA schemes with non-homogeneous transition kernels, Sequential Analysis 22, 241-255.
S. Knoth (2004), Fast initial response features for EWMA Control Charts, Statistical Papers 46, 47-64.
S. Knoth (2014?), tbd, tbd, tbd-tbd.
K.-H. Waldmann (1986), Bounds for the distribution of the run length of geometric moving average charts, Appl. Statist. 35, 151-158.
xewma.q
for the usual RL quantiles computation of EWMA control charts.
## Jones/Champ/Rigdon (2001)
c4m <- function(m, n) sqrt(2)*gamma( (m*(n-1)+1)/2 )/sqrt( m*(n-1) )/gamma( m*(n-1)/2 )
n <- 5 # sample size
m <- 20 # pre run with 20 samples of size n = 5
C4m <- c4m(m, n) # needed for bias correction
# Table 1, 3rd column
lambda <- 0.2
L <- 2.636
xewma.Q <- Vectorize("xewma.q", "mu")
xewma.Q.prerun <- Vectorize("xewma.q.prerun", "mu")
mu <- c(0, .25, .5, 1, 1.5, 2)
Q1 <- ceiling(xewma.Q(lambda, L, mu, 0.1, sided="two"))
Q2 <- ceiling(xewma.Q(lambda, L, mu, 0.5, sided="two"))
Q3 <- ceiling(xewma.Q(lambda, L, mu, 0.9, sided="two"))
cbind(mu, Q1, Q2, Q3)
## Not run:
p.Q1 <- xewma.Q.prerun(lambda, L/C4m, mu, 0.1, sided="two",
size=m, df=m*(n-1), estimated="both")
p.Q2 <- xewma.Q.prerun(lambda, L/C4m, mu, 0.5, sided="two",
size=m, df=m*(n-1), estimated="both")
p.Q3 <- xewma.Q.prerun(lambda, L/C4m, mu, 0.9, sided="two",
size=m, df=m*(n-1), estimated="both")
cbind(mu, p.Q1, p.Q2, p.Q3)
## End(Not run)
## original values are
# mu Q1 Q2 Q3 p.Q1 p.Q2 p.Q3
# 0.00 25 140 456 13 73 345
# 0.25 12 56 174 9 46 253
# 0.50 7 20 56 6 20 101
# 1.00 4 7 15 3 7 18
# 1.50 3 4 7 2 4 8
# 2.00 2 3 5 2 3 5
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.