| MI.local | R Documentation |
Reports the local Moran Coefficient for each unit.
MI.local(x, W, alternative = "greater", na.rm = TRUE)
x |
a vector |
W |
spatial connectivity matrix |
alternative |
specification of alternative hypothesis as 'greater' (default), 'lower', or 'two.sided' |
na.rm |
listwise deletion of observations with missing values (TRUE/ FALSE) |
Returns an object of class data.frame that contains the
following information for each variable:
Iiobserved value of local Moran's I
EIiexpected value of local Moran coefficients
VarIivariance of local Moran's I
zIistandardized local Moran coefficient
pIip-value of the test statistic
The calculation of the statistic and its moments follows Anselin (1995) and Sokal et al. (1998).
Sebastian Juhl
Anselin, Luc (1991): Local Indicators of Spatial Association-LISA. Geographical Analysis, 27 (2): pp. 93 - 115.
Bivand, Roger S. and David W. S. Wong (2018): Comparing Implementations of Global and Local Indicators of Spatial Association. TEST, 27: pp. 716 - 748.
Sokal, Robert R., Neal L. Oden, Barbara A. Thomson (1998): Local Spatial Autocorrelation in a Biological Model. Geographical Analysis, 30 (4): pp. 331 - 354.
MI.vec, MI.ev, MI.sf,
MI.resid, MI.decomp
data(fakedata)
x <- fakedataset$x2
(MIi <- MI.local(x = x, W = W, alternative = "greater"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.